Skip to main content

Why Cortices ? Neural Computation in the Vertebrate Visual System

  • Conference paper
Neural Computers

Part of the book series: Springer Study Edition ((SSE,volume 41))

Abstract

We propose three high level structural principles of neural networks in the vertebrate visual cortex and discuss some of their computational implications for early vision: a) Lamination, average axonal and dendritic domains, and intrinsic feedback determine the spatio-temporal interactions in cortical processing. Possible applications of the resulting filters include continuous motion perception and the direct measurement of high-level parameters of image flow, b) Retinotopic mapping is an emergent property of massively parallel connections. With a local intrinsic operation in the target area, mapping combines to a space-variant image processing system as would be useful in the analysis of optical flow. c) Further space-variance is brought about by both, discrete (patchy) connections between areas and periodic (columnar) arrangement of specialized neurons within the areas. We present preliminary results on the significance of these principles for neural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E.H. and Bergen, J.R.: Spatiotemporal energy models for the perception of motion. /. Opt. Soc. Am. A2, 322–342 (1985)

    Google Scholar 

  • Barlow, H.B.: Why have multiple cortical areas? Vision Res. 26, 81–90 (1986)

    Article  Google Scholar 

  • Fischer, B.: Overlap of receptive field centers and representation of the visual field in the cat’s optic tract. Vision Res. 13, 2113–2120 (1973)

    Article  Google Scholar 

  • Heeger, D.J.: Optical flow from spatiotemporal filters. Proc. First Intl. Conf. Comp. Vis., London, pp. 181–190, IEEE 1987

    Google Scholar 

  • Krone, G., Mallot, H.A., Palm, G., Schüz, A.: Spatio-temporal receptive fields: a dynamical model derived from cortical architectonics. Proc. Roy. Soc. (Lond.) B 226, 421–444 (1986)

    Article  Google Scholar 

  • Jain, R., Barlett, S.L., O’Brien, N.: Motion stereo using ego-motion complex logarithmic mapping. IEEE Trans. Pattern Anal. Machine Intel. (PAMI) 9, 356–369 (1987)

    Article  Google Scholar 

  • Koenderink, J.J. and Van Doorn, A.J.: Local structure of movement parallax of the plane.J. Opt. Soc. Am. 66 ,717–723 (1976)

    Article  Google Scholar 

  • Korn, A. and Von Seelen, W.: Dynamische Eigenschaften von Nervennetzen im visuellen System. Kybernetik 10, 64–77 (1972)

    Article  MATH  Google Scholar 

  • Little, J.J., Bülthoff, H.H., Poggio, T.: Parallel optical flow computation. In: Baumann, L. (ed.) Proc. Image Understanding Workshop ,Scientific Applications International Corp. (1987)

    Google Scholar 

  • Löwel, S., Freeman, B., Singer, W.: Topographic organization of the orientation column system in large flat-mounts of the cat visual cortex: a2-deoxyglucose study.J. Comp. Neurol. ,255, 401–415 (1987)

    Article  Google Scholar 

  • Mallot, H.A.: An overall description of retinotopic mapping in the cat’s visual cortex areas 17, 18, and 19. Biol. Cybern. 52 ,45–51 (1985)

    Article  MATH  Google Scholar 

  • Mallot, H.A.: Point images, receptive fields, and retinotopic mapping. Trends in Neurosci. 10, 310–311 (1987)

    Article  Google Scholar 

  • Marroquin, J.L., Mitter, S., Poggio, T.: Probabilistic solution of ill-posed problems in computational vision. In: Baumann, L. (ed.) Proc. Image Understanding Workshop ,Scientific Applications International Corp., (1986)

    Google Scholar 

  • Mitchison, G. and Durbin, R.: Optimal numberings of an N x N array. SIAM J. Alg. Disc Meth. 7, 571–582 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Poggio, T., Torre, V., Koch, C: Computational vision and regularization theory. Nature ’ill ,314–319 (1985)

    Article  Google Scholar 

  • Reitboeck, H.J. and Altmann, J.: A model for size-and rotationinvariant pattern processing in the visual system. Biol. Cybern. 51, 113–121 (1984)

    Article  MATH  Google Scholar 

  • Regan, D. and Beverly, K.I.: Looming detectors in the human visual pathway. Vision Res. 18, 415–421 (1978)

    Article  Google Scholar 

  • Sawchuk, A.A.: Space-variant image restoration by coordinate transforms. J. Opt. Soc. Am. 64, 138–144 (1974)

    Article  Google Scholar 

  • Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Res. 20, 645–669 (1980)

    Article  Google Scholar 

  • Shen, C.W., Lee, R.C.T., Chin, Y.H.: A parallel nonlinear mapping algorithm. Intl. J. Pattern Rec. Artif. Intellig. 1 ,53–69 (1987)

    Article  Google Scholar 

  • Sherk, H.: Coincidence of patchy inputs from the lateral geniculate complex and area 17 to the cat’s Clare-Bishop area. J. Comp. Neurol. 253, 105–120 (1986)

    Article  Google Scholar 

  • Swindale, N.V., Matsubara, J.A., Cynander, M.S.: Surface organization of orientation and direction selectiviy in cat area 18. J. Neurosci. 7, 1414–1427 (1987)

    Google Scholar 

  • Tusa, R.J., Rosenquist, A.C., Palmer, L.A.: Retinotopic organization of areas 18 and 19 in the cat. /. Comp. Neurol. 185, 657–678

    Google Scholar 

  • Van Essen, D.: Functional organization of primate visual cortex. In:Peters, A. and Jones, E.G. (eds.) Cerebral Cortex Vol 3, New York & London (Plenum Press) pp 259–329 (1985)

    Google Scholar 

  • Von Seelen, W., Mallot, H.A., Giannakopoulos. F.: Characteristics of neuronal systems in the visual cortex. Biol. Cybem. 56, 37–49 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mallot, H.A. (1989). Why Cortices ? Neural Computation in the Vertebrate Visual System. In: Eckmiller, R., v.d. Malsburg, C. (eds) Neural Computers. Springer Study Edition, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83740-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83740-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50892-2

  • Online ISBN: 978-3-642-83740-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics