Skip to main content

Part of the book series: Hochschultext ((HST))

  • 143 Accesses

Zusammenfassung

Alle physikalischen Vorgänge sind grundsätzlich nichüinear. Daß trotz dieser Tatsache der mathematischen Physik so große Erfolge bei deren Beschreibung, d.h. bei der qualitativen wie quantitativen Voraussage des Verhaltens physikalischer Systeme, beschieden sind, liegt vor allem daran, daß es fast stets gelingt, die nichtlinearen Phänomene durch ein lineares Gesetz zu approximieren. Die Notwendigkeit der Linearisierung ergibt sich — mathematisch gesehen — aus der Tatsache, daß für nichtlineare Gleichungen fast keine allgemeinen analytischen Verfahren bereitstehen, während für lineare Differentialgleichungen — insbesondere gewöhnliche — die analytische Theorie stark ausgebaut ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Großmann, S.; Thomae, S.: Invariant distributions and stationary correlation functions of the one-dimensional discrete processes. Z. Naturforsch. 32a (1977) 1353–1365.

    Google Scholar 

  2. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1975) 25–52.

    Article  Google Scholar 

  3. McLaughlin, J.B.; Martin, P.C.: Transition to turbulence in a statically stressed fluid system. Phys. Rev. A12 (1975) 186–203.

    Google Scholar 

  4. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963) 130–141.

    Article  Google Scholar 

  5. Rayleigh, J.W.S., Lord: The theory of sound. New York: Dover 1945 §68b.

    Google Scholar 

  6. Landau, L.D.: On the problem of turbulence. C.R.URSS 44 (1944) 311 In: ter Haar, D. (ed.): Collected papers of Landau. London: Pergamon 1965.

    Google Scholar 

  7. Newhouse, S.E.; Ruelle, D.; Takens, F.: Occurence of strange axiom A attractors near quasi-periodic flow on Tm, m > 3. Commun. Math. Phys. 64 (1978) 35–40.

    Article  Google Scholar 

  8. Thompson, J.M.T; Stewart, H.B.: Nonlinear dynamics and chaos. Chichester: Wiley 1986.

    Google Scholar 

  9. Moon, F.C.: Chaotic Vibrations. New York: Wiley 1987.

    Google Scholar 

  10. Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer 1983.

    Google Scholar 

  11. Bergé, P.; Pomeau, Y.; Vidal, Ch.: Order within chaos. New York: Wiley 1986.

    Google Scholar 

  12. Schuster, H.G.: Deterministic chaos, 2nd edn. Weinheim: VCH 1988.

    Google Scholar 

  13. Collet, P.; Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston: Birkhäuser 1981.

    Google Scholar 

  14. Devaney, R.L.: An introduction to chaotic dynamical systems. Menlo Park: Benjamin/Cummings 1986.

    Google Scholar 

  15. Mandelbrot, B.B.: Die fraktale Geometrie der Natur. Basel: Birkhäuser 1987.

    Google Scholar 

  16. Peitgen, H.-O.; Richter, P.H.: The beauty of fractals. Berlin: Springer 1986.

    Book  Google Scholar 

  17. Hao, B.-L.: Chaos. Singapore: World Scientific 1984.

    Google Scholar 

  18. Ueda, Y.: Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions. In: Holmes, P.J. (ed.): New approaches to nonlinear problems in dynamics. SIAM: Philadelphia 1980 311–322.

    Google Scholar 

  19. Franceschini, V.; Tebaldi, G: Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier-Stokes equations. J. Stat. Phys. 22 (1979) 707–726.

    Article  Google Scholar 

  20. Lichtenberg, A.J.; Lieberman, M.A.: Regular and stochastic motion. New York: Springer 1983.

    Google Scholar 

  21. Kadanoff, L.P.: Roads to chaos. Physics today 36 No. 12 (1983) 46–53.

    Article  Google Scholar 

  22. Parker, T.S.; Chua, L.O.: Chaos: a tutorial for engineers. Proc. IEEE 75 (1987) 982–1008.

    Article  Google Scholar 

  23. Ruelle, D.: Strange attractors. Math. Intelligencer 2 (1980) 126–137.

    Article  Google Scholar 

  24. Ioss, G.; Joseph, D.D.: Elementary stability and bifurcation theory. New York: Springer 1980.

    Google Scholar 

  25. Hirsch, M.W.; Smale, S.: Differential equations, dynamical systems, and linear algebra. New York: Academic Press 1974.

    Google Scholar 

  26. Haken, H.: At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys. Lett. 94A (1983) 71–72.

    Google Scholar 

  27. Kaplan, J.L.; Yorke, J.A.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.-O.; Walther, H.-O. (eds): Functional difference equations and approximation of fixed points. Lect. Notes in Math. 730 Berlin: Springer 1979.

    Google Scholar 

  28. Frederickson, P.; Kaplan, J.L.; Yorke, E.D.; Yorke, J.A.: The Lyapunov dimension of strange attractors. J. Diff. Eq. 49 (1983) 185–207.

    Article  Google Scholar 

  29. Grassberger, P.; Procaccia, I.: Measuring the strangeness of strange attractors. Physica 9D (1983) 189–208.

    Google Scholar 

  30. Ruelle, D.; Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20 (1971) 167–192, 23 (1971) 343-344.

    Article  Google Scholar 

  31. Curry, J.H.; Yorke, J.A.: A transition from Hopf bifurcation to chaos: computer experiments on maps in R 2. In: Markley, N.G.; Martin, J.C.; Perrizo, W. (eds): Structure of attractors in dynamical systems. Lect. Notes in Math. 668 New York: Springer 1978.

    Google Scholar 

  32. Pomeau, Y.; Manneville, P.: Intermittency: a generic phenomenon at the onset of turbulence. In: Laval, G.; Gresillon, D. (eds): Intrinsic stochasticity in plasmas. Orsay: Ed. de Physique 1978.

    Google Scholar 

  33. Pomeau, Y.; Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74 (1980) 189–287.

    Article  Google Scholar 

  34. Lauterborn, W.; Meyer — Ilse, W.: Chaos. Physik in unserer Zeit 17 (1986) 177–187.

    Article  Google Scholar 

  35. Nicolis, G.; Prigogine, I: Self-organization in nonequilibrium systems. New York: Wiley 1977.

    Google Scholar 

  36. Martin, B.: The cockatoo. Math. Intelligencer 9 No. 1 (1987) 72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plaschko, P., Brod, K. (1989). Deterministisches Chaos — Eine Einführung. In: Höhere mathematische Methoden für Ingenieure und Physiker. Hochschultext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83621-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83621-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50388-0

  • Online ISBN: 978-3-642-83621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics