Skip to main content

Comparison of Urinary Modified Nucleosides and Bases in Rats with Hepatomas and Nephroblastomas

  • Chapter
Modified Nucleosides and Cancer

Abstract

It has been known for more than 20 years that patients with cancer excrete greater than normal amounts of purine and pyrimidine derivatives in their urines (Adams et al. 1960; Park et al. 1962). The unmodified purine derivatives, adenine and guanine, are normally metabolized to uric acid, but in some instances they are not metabolized further and may be excreted or recycled into nucleic acids. The unmodified pyrimidine derivatives, cytosine and uracil, are usually degraded and excreted as ammonia and urea, but recycling and excretion may occur. It was not until the pioneering studies by Borek and his students on tRNA methyltransferases (Fleissner and Borek 1963) that the methylated nucleosides in the urine were shown to be derived from tRNA (Mandel et al. 1966). More recently, using more sensitive techniques, several groups of investigators have reported increased levels of modified nucleosides in urines from patients with cancer (Hogan et al. 1970; Waalkes et al. 1973; Mrochek et al. 1974; Senftleber et al. 1976; Davis et al. 1977; Gehrke et al. 1978; Speer et al. 1979; Hartwick et al. 1980). The increased levels of most modified nucleosides and bases in urine of hosts with neoplasms have been attributed to an increased rate of turnover of tRNA in cancer tissue (Borek et al. 1977). The evidence to date suggests that modified nucleosides or bases are not metabolized further and are quantitatively excreted into the urine (Weissman et al. 1962; Dlugajczyk and Eiler 1966). More than 20 modified nucleosides have been isolated from human urine (Chedda 1975).

The authors are indebted to Mr. Jeffrey Turner for excellent technical assistance and to the American Cancer Society for supporting this work with the Herbert P. Clauberg Memorial Grant for Cancer Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ψ:

pseudouridine

m1A:

1-methyladenosine

m1G:

1-methylguanosine

m 22 G:

N 22 dimethylgua-nosine

m2G:

2-methylguanosine

m1I:

1-methylinosine

m3C:

3-methylcytidine

m5C:

5-methylcytidine

m6A:

6-methyladenosine

Urn:

2′-O-methyluridine

m7Gua:

7-methylguanine

Ura:

uracil

m1H:

1-methylhypoxanthine

Thy:

thymine

dT:

thymidine

UV:

ultraviolet light

DMSO:

dimethylsulfoxide

HPLC:

high-pressure liquid chromatography

References

  • Adams WS, Davis F, Nakatani M (1960) Purine and pyrimidine excretion in normal and leukemic subjects. Am J Med 28: 726–734

    Article  PubMed  CAS  Google Scholar 

  • Borek E, Baliga BS, Gehrke CW et al. (1977) High turnover rate of transfer RNA in tumor tissue. Cancer Res 37:3362–3366

    PubMed  CAS  Google Scholar 

  • Bradford DS, Hacker B, Clark I (1972) Transfer ribonucleic acid methylases of bone: Studies on vitamin A and D deficiency. Biochem J 126: 1057–1066

    PubMed  CAS  Google Scholar 

  • Chedda CB (1975) In: Fasman G (ed) The handbook of biochemistry and molecular biology, vol I. Chemical Rubber Co., Cleveland Ohio, p251

    Google Scholar 

  • Clark I, Trebilcock-Guzman M (1979) Improved separation of modified nucleosides from tRNA hydrolysate: The patterns of tRNA methylation in rat tissue. J Biochem and Biophys Methods 1:287–298

    Article  CAS  Google Scholar 

  • Datta RK, Datta B (1969) Role of methylated nucleic acids in carcinogenesis. Exp Mol Pathol 10:129–140

    Article  PubMed  CAS  Google Scholar 

  • Davis GE, Suits RD, Kuo KC, Gehrke CW, Waalkes TP, Borek E (1977) High-performance liquid chromatographic separation and quantification of nucleosides in urine and some other biological fluids. CUn Chem 23: 1427–1435

    CAS  Google Scholar 

  • Desrosiers R, Frederici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff Hepatoma cells. Proc Natl Acad Sci USA 71: 3971–3975

    Article  PubMed  CAS  Google Scholar 

  • Dlugajczyk A, Eiler JJ (1966) Lack of catabolism of 5-ribosyluracil in man. Nature 212:611–612

    Article  PubMed  CAS  Google Scholar 

  • Dunn DB, Hall RH (1975) In: Fasman G (ed) The handbook of biochemistry and molecular biology, vol I. Chemical Rubber Co, Cleveland Ohio

    Google Scholar 

  • Fleissner E, Borek E (1963) Studies on the enzymatic methylation of soluble RNA. Biochemistry 2: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Garel JP, et al. (1976) Structural studies on RNA from Bombyx mori L. I. Nucleoside composition of enriched tRNA species from posterior silk gland purified by counter current distribution. Biochimie 58: 1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Gehrke CW, Kuo KC, Davis GE, Suits RD, Waalkes TP, Borek E (1978) Quantitative high-performance liquid chromatography of nucleosides in biological material. J Chromatogr 150: 455–476

    Article  PubMed  CAS  Google Scholar 

  • Gehrke CW, Kuo KC, Waalkes TP, Borek E (1979) Patterns of urinary excretion of modified nucleosides. Cancer Res 39: 1150–1153

    PubMed  CAS  Google Scholar 

  • Hancock RL, Forrester PI (1973) Increase of soluble RNA methylase activities by chemical carcinogens. Cancer Res 33: 1747–1753

    PubMed  CAS  Google Scholar 

  • Hancock RL, McFarland P, Fox RR (1967) sRNA methylase activity of embryonic liver. Experientia 23: 806–807

    Article  PubMed  CAS  Google Scholar 

  • Hartwick RA, Krstulovic AM, Brown PR (1979) Identification and quantitation of nucleosides, bases and other UV absorbing compounds in serum, using reversed phase high performance liquid chromatography. II. Evaluation of human sera. J Chromatogr 186: 659–676

    Article  PubMed  CAS  Google Scholar 

  • Hogan A, Creuss-Callaghan MB, Fenelly JJ (1970) Studies of pseudouridine changes in chronic lymphatic leukemia during therapy. Irish J Med Sci 3: 505–511

    Article  Google Scholar 

  • Mandel LR, Srinivasan PR, Borek E (1966) Origins of urinary methylated purines. Nature 209:586–588

    Article  PubMed  CAS  Google Scholar 

  • McFarlane ES, Shaw GJ (1968) Observed increase in methylated purines excreted by hamsters bearing adenovirus-12 induced tumors. Can J Microbiol 14: 135–187

    Google Scholar 

  • Mrochek JE, Dinsmore SR, Waalkes TP (1974) Analytic techniques in the separation and identification of specific purine and pyrimidine.degradation products of tRNA: application to urine samples from cancer patients. J Natl Cancer Inst 53: 1553–1563

    PubMed  CAS  Google Scholar 

  • Park RW, Holland JF, Jenkins A (1962) Urinary purines in leukemia. Cancer Res 22:469–477

    PubMed  CAS  Google Scholar 

  • Randerath E, Chia LL, Morris HP, Randerath K (1974) Transfer RNA base composition studies in Morris hepatomas and rat liver. Cancer Res 34:643–653

    PubMed  CAS  Google Scholar 

  • Roe BA, Stankiewicz AF, Rizi HL, Weisz C, DiLauro MN, Pike D, Chen C, Chen E (1979) Comparison of rat liver and Walker 256 carcinosarcoma tRNAs. Nucleic Acids Res 8:673–688

    Article  Google Scholar 

  • Rottman FM (1978) In: Clark BFC (ed) International review of biochemistry, biochemistry of nucleic Acids II, Vol 17. Methylation and polyadenylation of heterogeneous nuclear and messenger RNA, pp 45–73

    Google Scholar 

  • Senftleber FC, Halline AG, Veening H, et al. (1976) Reversed phase liquid chromatographic analysis of hemodialysate from uremic patients. Clin Chem 22: 1522–1527

    PubMed  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9:645–653

    Article  PubMed  CAS  Google Scholar 

  • Speer J, Gehrke CW, Kuo KC, Waalkes TP, Borek E (1979) tRNA breakdown products as markers for cancer. Cancer 44: 2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Stewart BW, Pegg AE (1972) Changes in tRNA methylase activity of rat kidney following administration of the carcinogen dimethylnitrosamine. Biochim Biophys Acta 281:416–424

    PubMed  CAS  Google Scholar 

  • Tsutsui E, Srinivasan PR, Borek E (1966) tRNA methylases in tumors of animal and human origin. Proc Natl Acad Sci USA 56: 1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Waalkes TP, Dinsmore SR, Mrochek JE (1973) Urinary excretion by cancer patients of the nucleosides N-dimethylguanosine, 1-methylinosine and pseudouridine. J Natl Cancer Inst 51: 271–274

    PubMed  CAS  Google Scholar 

  • Weissman S, Eisen AZ, Lewis M, Karon M (1962) Pseudouridine metabolism. III. Studies with isotopically labeled pseudouridine. J Lab Clin Med 60:40–47

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Clark, I., MacKenzie, J.W., McCoy, J.R., Lin, W. (1983). Comparison of Urinary Modified Nucleosides and Bases in Rats with Hepatomas and Nephroblastomas. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics