Skip to main content

Mechanisms of Photomechanical Movement

  • Chapter
Photoreceptor Optics

Abstract

A number of arthropod eyes have changes in the endoplasmic reticulum near the rhabdomeres and also radial movements of shielding pigment granules in response to light and dark adaptation (BUTLER, 1973; KIRSCHFELD and FRANCESCHINI, 1969; MENZEL, 1972; MILLER, 1958; WALCOTT, 1974). The optical consequences are discussed in FRANCESCHINI, this volume. Two hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the pigment granule movement; while the causes of the endoplasmic reticulum changes have not been explored. The two hypotheses regarding the movement of shielding pigment are a) an electrophoresis model in which the force exerted on pigment granules is related to membrane potential (STAVENGA, 1971; HAGINS and LIEBMAN, 1962); and b) a model in which the pigment granules are moved by micro-tubules (MILLER and CAWTHON, 1974). Evidence is presented here to suggest that not only are the microtubules involved in the movement of shielding pigment but that they also mediate the changes in the structure of the endoplasmic reticulum in the compound eye of Limulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BEHRENS, M.E.: Photomechanical changes in the ommatidia of the Limulus lateral eye during light and dark adaptation. J. comp. Physiol. 89, 45–57 (1974).

    Article  Google Scholar 

  • BROWN, J.: Vanderbilt University; personal communication (1974)

    Google Scholar 

  • BUTLER, R.: The anatomy of the compound eye of Periplaneta americana. J. comp. Physiol. 83, 223–238 (1973).

    Article  Google Scholar 

  • EGUCHI, E., WATERMAN, T.H.: Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79, 209–229 (1967)

    Article  Google Scholar 

  • FAHRENBACH, W.H.: The morphology of the eyes of Limulus. II. Ommatidia of the com-pound eye. Z. Zellforsch. 93, 451–483 (1969).

    Article  Google Scholar 

  • FRANCESCHINI, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. This volume, pp. 98–125.

    Google Scholar 

  • HAGINS, W.A., LIEBMAN, P.A.: Light-induced pigment migration in the squid retina. Biol. Bull. 123, 498 (1962).

    Google Scholar 

  • HORRIDGE, G.A., BARNARD, P.B.T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).

    Google Scholar 

  • KIRSCHFELD, K., FRANCESCHINI, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    Article  Google Scholar 

  • MENZEL, R.: The fine structure of the compound eye of Formica poZyctena – functional morphology of a hymenopterean eye. In: Information Processing in the Visual Systems of Arthropods (ed R. WEHNER ) pp. 37–47. Berlin-Heidelberg-New York: Springer 1972

    Chapter  Google Scholar 

  • MILLER, W.H.: Morphology of the ommatidia of the compound eye of Limulus. J. Bio-phys. Biochem. Cytol. 3, 421–428 (1957).

    Article  Google Scholar 

  • MILLER, W.H.: Fine structure of some invertebrate photoreceptors. Ann. N.Y. Acad. Sci. 74, 204–209 (1958).

    Article  ADS  Google Scholar 

  • MILLER, W.H., CAWTHON, D.F.: Pigment granule movement in Limulus photoreceptors. Invest. Ophthal. 13, 401–405 (1974).

    Google Scholar 

  • SHELANSKI, M.L., TAYLOR, E.W.: Properties of the protein subunit of central-pair and outer doublet microtubules of sea urchin flagella. J. Cell Biol. 38, 304 (1968).

    Article  Google Scholar 

  • STAVENGA, D.G.: Adaptation in the compound eye. Proc. Int. Union Physiol. Sc. IX, 532, X XV Int. Congr. Munich (1971).

    Google Scholar 

  • TAYLOR, A., MAMELEK, M., REAVEN, E., MAFFLY, R.: Vasopressin: possible role of microtubules and microfilaments in its action. Science 181, 347–350 (1973)

    Article  ADS  Google Scholar 

  • WALCOTT, B.: Anatomical changes during light adaptation in insect compound eyes. In: The Compound Eye and Vision in Insects (ed. G.A. HORRIDGE) Oxford: Oxford University Press. In press 1974.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Miller, W.H. (1975). Mechanisms of Photomechanical Movement. In: Snyder, A.W., Menzel, R. (eds) Photoreceptor Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80934-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80934-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80936-1

  • Online ISBN: 978-3-642-80934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics