Skip to main content

Zellulärer und molekularer Aufbau der intestinalen Schlußleisten

  • Conference paper
Ökosystem Darm VII
  • 27 Accesses

Zusammenfassung

Es ist seit über 100 Jahren bekannt, daß die benachbarten Zellen eines Epithels an ihrem luminalen Pol durch Schlußleisten miteinander verbunden sind [9]. Diese Schlußleisten (“tight junction”, “occluding junction”, zonula occludens) trennen die Flüssigkeitsräume auf der luminalen und serosalen Oberfläche der Epithelschicht voneinander ab und bilden die Grenze zwischen der apikalen und basolateralen Membran jeder Einzelzelle. Über die Rolle der Schlußleisten in der Barrierefunktion des Gastrointestinaltraktes ist neben anderen Quellen [1, 2, 6, 11, 14, 31, 34, 42] auch in dieser Serie berichtet worden [58, 60]. Die wichtige Rolle der Schlußleisten im transepithelialen Ionentransport soll hier nur durch eine Zahl verdeutlicht werden: in den sog. undichten Epithelien (z.B. Dünndarm, Gallenblase, proximaler Tubulus der Niere) fließt bis zu 98% des transepithelialen Ionenstroms an den Zellen vorbei durch die Schlußleisten. Trotz des Interesses zahlreicher Forschungsgruppen ist aber bis heute noch größtenteils ungeklärt, wie die Permeabilitätsbarriere der Schlußleisten auf molekularer Ebene aufgebaut ist und welche Rolle die Schlußleisten bei der physiologischen Regulation des transepithelialen Ionentransports spielen. Dies ist - zumindest teilweise - auf methodische Schwierigkeiten zurückzuführen: im Gegensatz zu Ionenkanälen, die mit der Patch-clamp-Methode isoliert untersucht werden können, existieren funktionierende Schlußleisten nur in intakten Zellverbänden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson JM, Fanning AS, Lapierre L, Van Itallie CM (1995) Zonula occludens (ZO-1 and ZO-2): Membrane-associated guanylate kinase homologues ( MAGuKs) of the tight junction. Biochem Soc Trans 23: 470–475

    Google Scholar 

  2. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Amer J Physiol-Gastrointest L 32: G467–G475

    Google Scholar 

  3. Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of occludin sequence cDNA cloning of human, mouse, dog, and rat-kangaroo homologes. J Cell Biol 133: 43–47

    Article  PubMed  CAS  Google Scholar 

  4. Bakker R, Groot J A (1989) Further evidence for the regulation of the tight junction ion selectivity by cAMP in goldfish intestinal mucosa. J Membr Biol 111: 25–35

    Article  CAS  Google Scholar 

  5. Balda MS, Gonzalez-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, Sainz JA, Cereijido M (1991) Assembly and sealing of tight junctions - possible participation of G-proteins, phospholipase-C, protein kinase-C and calmodulin. J Membr Biol 122: 193–202

    Article  PubMed  CAS  Google Scholar 

  6. Balda MS, Fallon MB, Van Itallie CM, Anderson JM (1992) Structure, regulation, and pathophysiology of tight junctions in the gastrointestinal tract. Yale J Biol Med 65: 725–735

    PubMed  CAS  Google Scholar 

  7. Balda MS, Gonzalez-Mariscal L, Matter K, Cereijido M, Anderson JM (1993) Assembly of the tight junction - the role of diacylglycerol. J Cell Biol 123: 293–302

    Article  PubMed  CAS  Google Scholar 

  8. Balda MS, Anderson JM (1993) Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 264: C918–C923

    PubMed  CAS  Google Scholar 

  9. Bonnet R (1895) Uber die Schlufileisten der Epithelien. Dt Med Wschr 21: 58

    Google Scholar 

  10. Cereijido M, Meza I, Martinez-Palomo A (1981) Occluding junctions in cultured epithelial monolayers. Am J Physiol 240: C96–C102

    PubMed  CAS  Google Scholar 

  11. Cereijido M (1992) Tight junctions. CRC Press, Boca Raton

    Google Scholar 

  12. Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J (1988) Cingulin, a new pripheral component of tight junctions. Nature (Lond) 333: 272–276

    Article  CAS  Google Scholar 

  13. Citi S (1992) Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 117: 169–178

    Article  PubMed  CAS  Google Scholar 

  14. Citi S (1993) The molecular organization of tight junctions. J Cell Biol 121: 485–489

    Article  PubMed  CAS  Google Scholar 

  15. Citi S, Volberg T, Bershadsky AD, Denisenko N, Geiger B (1994) Cytoskeletal involvement in the modulation of cell-cell junctions by the protein kinase inhibitor H-7. J Cell Sci 107: 683–692

    PubMed  CAS  Google Scholar 

  16. Claude P (1978) Morphological factors influencing transepithelial permeability: A model for the resistance of the Zonula Occludens. J Membr Biol 39: 219–232

    Article  PubMed  CAS  Google Scholar 

  17. Claude P, Goodenough DA (1973) Fracture faces of Zonulae Occludentes from “tight” and “leaky” epithelia. J Cell Biol 58: 390–400

    Article  PubMed  CAS  Google Scholar 

  18. Collares-Buzato, Jepson MA, McEvan GTA, Simmons NL, Hirst BH (1994a) Junctional uvomorulin/E-cadherin and phosphotyrosine- modified protein content are correlated with paracellular permeability in Madin-Darby canine kidney ( MDCK) epithelia. Histochemistry 101: 185–194

    Google Scholar 

  19. Collares-Buzato, McEvan GTA, Jepson MA, Simmons NL, Hirst BH (1994b) Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2+ in cultured epithelia. Biochim Biophys Acta-Mol Cell Res 1222: 147–158

    Google Scholar 

  20. Contreras RG, Miller JH, Zamora M, Gonzalez-Mariscal L, Cereijido M (1992) Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation. Am J Physiol 263: C313–C318

    PubMed  CAS  Google Scholar 

  21. Denisenko N, Burighel P, Citi S (1994) Different effects of protein kinase inhibitors on the localization of junctional proteins at cell-cell contact sites. J Cell Sci 107: 969–981

    PubMed  CAS  Google Scholar 

  22. Dodane V, Kachar B (1996) Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membrane Biol 149: 199–209

    Article  CAS  Google Scholar 

  23. Farquhar MG, Palade G (1963) Junctional complexes in various epithelia. J Cell Biol 17: 375–412

    Article  PubMed  CAS  Google Scholar 

  24. Fromm M, Tykocinski M, Schulzke JD, Hegel U, Bentzel CJ (1990) pH dependence of protamine action on apical membrane permeability in Necturus gallbladder epithelium. Biochim Biophys Acta 1027: 179–184

    Google Scholar 

  25. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin - a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777–1788

    Article  PubMed  CAS  Google Scholar 

  26. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127: 1617–1626

    Article  PubMed  CAS  Google Scholar 

  27. Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S (1996) Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci 109: 429–435

    PubMed  CAS  Google Scholar 

  28. Gonzalez-Mariscal L, Chavez de Ramirez B, Cereijido M (1985) Tight junction formation in cultured epithelial cells ( MDCK ). J Membr Biol 86: 113–125

    Google Scholar 

  29. Gonzalez-Mariscal L, Contreras RG, Bolivar JJ, Ponce A, Deramirez BC, Cereijido M (1990) Role of calcium in tight junction formation between epithelial cells. Am J Physiol 259: C978–C986

    PubMed  CAS  Google Scholar 

  30. Griepp EB, Dolan WJ, Robbins ES, Sabatini DD (1983) Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J Cell Biol 96: 693–702

    Article  PubMed  CAS  Google Scholar 

  31. Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 253: C749–C758

    PubMed  CAS  Google Scholar 

  32. Gumbiner B, Stevenson BR, Grimaldi A (1988) Role of the cell adhesion molecule uvo- morulin in formation and maintenance of the epithelial junctional complex. J Cell Biol 107: 1575–1587

    Article  PubMed  CAS  Google Scholar 

  33. Gumbiner B, Lowenkopf T, Apatira D (1991) Identification of a 160-kDa polypeptide that binds to the tight junction protein-ZO-1. Proc Natl Acad Sci USA 88: 3460–3464

    Article  PubMed  CAS  Google Scholar 

  34. Hirsch M, Noske W (1993) The tight junction - structure and function. Micron 24: 325–352

    Article  CAS  Google Scholar 

  35. Howarth AG, Hughes MR, Stevenson BR (1992) Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Physiol 262: C461–C469

    PubMed  CAS  Google Scholar 

  36. Howarth AG, Singer KL, Stevenson BR (1994) Analysis of the distribution and phosphorylation state of ZO-1 in MDCK and nonepithelial cells. J Membr Biol 137: 261–270

    PubMed  CAS  Google Scholar 

  37. Howarth AG, Stevenson BR (1995) Molecular environment of ZO-1 in epithelial and non-epithelial cells. Cell Motil Cytoskeleton 31: 323–332

    Article  PubMed  CAS  Google Scholar 

  38. Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S (1993) The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction associated protein in epithelial cells - cDNA cloning and immunoelectron microscopy. J Cell Biol 121: 491–502

    Article  PubMed  CAS  Google Scholar 

  39. Jovov B, Lewis SA, Crowe WE, Berg JR, Wills NK (1994) Role of intracellular Ca2+ in modulation of tight junction resistance in A6 cells. Am J Physiol 266: F775–F784

    PubMed  CAS  Google Scholar 

  40. Kachar B, Pinto da Silva P (1981) Rapid massive assembly of tight junction strands. Science 213: 541–543

    Article  PubMed  CAS  Google Scholar 

  41. Kachar B, Reese TS (1982) Evidence for the lipidic nature of tight junction strands. Nature (Lond) 296: 464–466

    Article  CAS  Google Scholar 

  42. Kim SK (1995) Tight junctions, membrane-associated guanylate kinases and cell signaling. Curr Opin Cell Biol 7: 641–649

    Article  PubMed  CAS  Google Scholar 

  43. Konari K, Sawada N, Zhong Y, Isomura H, Nakagawa T, Mori M (1995) Development of the blood-retinal barrier in vitro: Formation of tight junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick retinal pigment epithelial cells. Exp Eye Res 61: 99–108

    Article  PubMed  CAS  Google Scholar 

  44. Kottra G (1995) Protein kinase inhibitor H7 prevents the decrease of tight junction resistance induced by serosal Ca2+ removal in Necturus gallbladder epithelium. Cell Physiol Biochem 5: 211–221

    Article  CAS  Google Scholar 

  45. Kottra G, Fromter E (1990a) Determination of paracellular shunt conductance in epithelia. In: Fleischer S, Fleischer B (eds) Methods in Enzymology, Vol. 191. Academic Press, N.Y. pp 4–30

    Google Scholar 

  46. Kottra G, Fromter E (1990b) Barium blocks cell membrane and tight junction conductances in Necturus gallbladder epithelium - Experiments with an extended impedance analysis technique. Pfliigers Arch 415: 718–725

    Article  CAS  Google Scholar 

  47. Kurihara H, Anderson JM, Farquhar MG (1995) Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Amer J Physiol- Renal Fl Elect 37: F514–F524

    Google Scholar 

  48. Li CX, Poznansky MJ (1990) Effect of FCCP on tight junction permeability and cellular distribution of ZO-1 protein in epithelial ( MDCK) cells. Biochim Biophys Acta 1030: 297–300

    Google Scholar 

  49. Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253: C171–C175

    PubMed  CAS  Google Scholar 

  50. Madara JL, Carlson S, Anderson JM (1993) ZO-1 maintains its spatial distribution but dissociates from junctional fibrils during tight junction regulation. Am J Physiol 264: C1096–C1101

    PubMed  CAS  Google Scholar 

  51. Mandel LJ, Bacallao R, Zampighi G (1993) Uncoupling of the molecular fence and paracellular gate functions in epithelial tight junctions. Nature 361: 552–555

    Article  PubMed  CAS  Google Scholar 

  52. Martinez-Palomo A, Erlij D (1975) Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci USA 72: 4487–4491

    Article  PubMed  CAS  Google Scholar 

  53. Miragall F, Krause D, de Vries U, Dermietzel R (1994) Expression of tight junction protein ZO-1 in the olfactory system: Presence of ZO-1 on olfactory sensory neurons and glial cells. J Comp Neurol 341: 433–448

    Google Scholar 

  54. Mohandas TK, Chen XN, Rowe LB, Birkenmeier EH, Fanning AS, Anderson JM, Korenberg JR (1995) Localization of the tight junction protein gene TJP1 to human chromosome 15ql3, distal to the Prader- Willi/Angelman region, and to mouse chromosome 7. Genomics 30: 594–597

    Article  PubMed  CAS  Google Scholar 

  55. Nathanson MH, Gautam A, Ng OC, Bruck R, Boyer JL (1992) Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol 262: G1079–G1086

    PubMed  CAS  Google Scholar 

  56. Nigam SK, Rodriguez-Boulan E, Silver RB (1992) Changes in intracellular calcium during the development of epithelial polarity and junctions. Proc Natl Acad Sci USA 89: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  57. Nilsson M (1991) Integrity of the occluding barrier in high-resistant thyroid follicular epithelium in culture. 1. Dependence of extracellular Ca2+ is polarized. Eur J Cell Biol 56: 295–307

    PubMed  CAS  Google Scholar 

  58. Schulzke JD, Fromm M (1995) Die physiologische Barrierefunktion des Dünndarmes. In: Caspary WF, Kist M, Zeitz M (eds) Ökosystem Darm VI. Springer Verlag, Berlin, pp 61–71

    Google Scholar 

  59. Sedar AW, Forte JG (1964) Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J Cell Biol 22: 173–188

    Article  PubMed  CAS  Google Scholar 

  60. Stein J, Ries J, Schröder O, Zeuzem S, Caspary WF (1994) Methodischer Zugang zur Messung der Permeabilität. In: Caspary WF, Kist M, Zeitz M (eds) Ökosystem Darm VI. Springer Verlag, Berlin, pp 72–84

    Google Scholar 

  61. Stevenson BR, Goodenough DA (1984) Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterisation. J Cell Biol 98: 1209–1221

    Article  PubMed  CAS  Google Scholar 

  62. Stevenson BR, Silicano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction ( Zonula occludens) in a variety of epithelia. J Cell Biol 103: 755–766

    Google Scholar 

  63. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS (1988) Tight junction struc¬ture and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107: 2401–2408

    Article  PubMed  CAS  Google Scholar 

  64. Stevenson BR, Anderson JM, Braun ID, Mooseker MS (1989a) Phosphorylation of the tight- junction protein ZO-1 in 2 strains of Madin-Darby Canine Kidney cells which differ in transepithelial resistance. Biochem J 263: 597–599

    PubMed  CAS  Google Scholar 

  65. Stevenson BR, Heintzelman MB, Anderson JM, Citi S, Mooseker MS (1989b) ZO-1 and Cingulin - Tight junction proteins with distinct identities and localizations. Am J Physiol 257: C621–C628

    PubMed  CAS  Google Scholar 

  66. Stuart RO, Nigam SK (1995) Regulated assembly of tight junctions by protein kinase C. Proc Natl Acad Sei USA 92: 6072–6076

    Article  CAS  Google Scholar 

  67. Vega-Salas DE, Salas PJI, Rodriguez-Boulan E (1988) Exocytosis of a vacuolar apical compartment (VAC): a cell-cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J Cell Biol 107: 1717–1728

    Article  PubMed  CAS  Google Scholar 

  68. Willott E, Balda MS, Heintzelman M, Jameson B, Anderson JM (1992) Localization and differential expression of 2 isoforms of the tight junction protein ZO-1. Am J Physiol 262: C1119–C1124

    PubMed  CAS  Google Scholar 

  69. Willott E, Balda MS, Fanning AS, Jameson B, Van Itallie C, Anderson JM (1993) The tight junction protein ZO-1 is homologous to the Drosophila Discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 90: 7834–7838

    Article  PubMed  CAS  Google Scholar 

  70. Zhong Y, Saitoh T, Minase T, Sawada N, Enomoto K, Mori M (1993) Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, Cingulin and ZO-2. J Cell Biol 120: 477–483

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kottra, G. (1996). Zellulärer und molekularer Aufbau der intestinalen Schlußleisten. In: Kist, M., Caspary, W.F., Lentze, M.J. (eds) Ökosystem Darm VII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80327-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80327-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61817-1

  • Online ISBN: 978-3-642-80327-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics