Skip to main content

Interactions of Peptides with Phospholipid Vesicles: Fusion, Leakage and Flip-Flop

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

  • 94 Accesses

Abstract

The understanding of the interrelationships among dynamics, structure, and function of membrane-interacting peptide segments has been intensely studied during the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentz J, Nir S (1981) Kinetic and equilibrium aspects of reversible aggregation. J Chem Soc, Faraday Trans 1 77: 1249–1275

    Article  CAS  Google Scholar 

  • Bentz J, Nir S, Covell D (1988) Mass action kinetics of virus-cell aggregation and fusion. Biophys J 54: 449–462

    Article  PubMed  CAS  Google Scholar 

  • Connoly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221: 709–713

    Article  Google Scholar 

  • DeGrado WF, Wasserman ZR, Lear JD (1989) Protein design, a minimalist approach. Science 243: 622–628

    Article  PubMed  CAS  Google Scholar 

  • Düzgüneş N, Gambale F (1988) Membrane action of synthetic peptides from influenza virus hemagglutinin and its mutants. FEBS Lett 227: 110–114

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Shavnin SA (1992) Membrane destabilization by N-terminal peptides of viral envelope proteins. J Membrane Biol 128: 71–80

    Article  Google Scholar 

  • Düzgüneş N, Lima MCP, Stamatatos L, Flasher D, Alford D, Friend DS, Nir S (1992) Fusion of influenza virus with human promyelocytic leukemia and lymphoblastic leukemia cell, and murine lymphoma cells: Kinetics of low pH-induced fusion monitored by fluorescence dequenching. J Gen Virol 73: 27–37

    Article  PubMed  Google Scholar 

  • Ellens H, Bentz J, Szoka FC (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of inter-bilayer contact. Biochemistry 23: 1532–1538

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Cheetham J, Epand RF, Yeagle PL, Richardson CD, Rockwell A, DeGrado, WF (1992) Peptide models for the membrane destabilizing actions of viral fusion proteins. Biopolymers 32: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Fattal E, Nir S, Parente RA, Szoka FC Jr (1994) Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry 33: 6721–6731

    Article  PubMed  CAS  Google Scholar 

  • Fox RO Jr, Richards FM (1982) A voltage-gated ion channel inferred from the crystal structure of alamethicin at 1.5Å resolution. Nature 300: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Gallaher WR, Segrest JP, Hunter E (1992) Are fusion peptides really “sided” insertional helices? Cell 70: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, White J, Waterfield M (1978) Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. Proc Natl Acad Sci (USA) 75: 2737–2740

    Article  CAS  Google Scholar 

  • Goormaghtigh E, de Meutter J, Szoka F, Cabiaux V, Parente R, Ruysschaert J-M (1991) Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. Eur J Biochem 195: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Harter C, James P, Bächi T, Semenza G, Brunner J (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ”fusion peptide”. J Biol Chem 264: 6459–6454

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Kok JW (1989) Entry mechanisms of enveloped viruses: Implications for fusion of intracellular membranes. Biosci Rep 9: 273–305

    Article  PubMed  CAS  Google Scholar 

  • Huschilt JC, Millman BM, Davis JH (1989) Orientation of α-helical peptides in a lipid bilayer. Biochim Biophys Acta 979: 139–141

    Article  PubMed  CAS  Google Scholar 

  • Larsen C, Nir S, Alford D, Jennings M, Lee K, Düzgüneş. N (1993) Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: Kinetic analysis and the role of lipid composition, pH and divalent cations. Biochim Biophys Acta 1147: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Lear JD, DeGrado WF (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J Biol Chem 262: 6500–6505

    PubMed  CAS  Google Scholar 

  • Lear JD, Wasserman ZR, DeGrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240: 1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Defrise-Quertain F, Decroly E, Vandenbranden M, Brasseur R, Ruysschaert J-M (1993) Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim Biophys Acta 1145: 124–133

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Sugahara Y, Takahashi S, Ohnishi S-l (1987) pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hyhdrophobic segment of influenza virus hemagglutinin. J Biochem 102: 957–962

    PubMed  CAS  Google Scholar 

  • Nieva JL, Nir S, Muga A, Goni FM, Wilschut J (1994) Interaction of the HIV-1 fusion peptide with phospholipid vesicles: Different structural requirements for fusion and leakage. Biochemistry 33: 3201–3209

    Article  PubMed  CAS  Google Scholar 

  • Nir S, Bentz J, Wilschut J, Düzgüneş, N (1983) Aggregation and fusion of vesicles. Prog Surface Sci 13: 1–124

    Article  CAS  Google Scholar 

  • Nir S, Klappe K, Hoekstra D (1986a) Kinetics of fusion between Sendai virus and erythrocyte ghosts: Application of mass action kinetic model. Biochemistry 25: 2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Nir S, Klappe K, Hoekstra D (1986b) Mass action an analysis of kinetics and extent of fusion between Sendai virus and phospholipid vesicles. Biochemistry 25: 8261–8266

    Article  PubMed  CAS  Google Scholar 

  • Nir S, Düzgüneş N, Pedroso de Lima MC, Hoekstra D (1990) Fusion of enveloped viruses with cells and liposomes. Cell Biophys 17: 181–201

    PubMed  CAS  Google Scholar 

  • Parente RA, Nir S, Szoka FC Jr (1988) pH-dependent fusion of phosphatidylserine small vesicles. J Biol Chem 263: 4724–4730

    PubMed  CAS  Google Scholar 

  • Parente RA, Nir S, Szoka FC Jr (1990a) Mechanism of leakage of phospholipid contents induced by the peptide GALA. Biochemistry 29, 8720–8728.

    Article  PubMed  CAS  Google Scholar 

  • Parente RA, Nadasdi L, Subbarao NK, Szoka FC Jr (1990b) Association of a pH-sensitive peptide with membrane vesicles: Role of amino acid sequence. Biochemistry 29: 8713–8719

    Article  PubMed  CAS  Google Scholar 

  • Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864: 305–359

    PubMed  CAS  Google Scholar 

  • Pownall HJ, Gotto AM, Sparrow JT (1984) Thermodynamics of lipid-protein association and the activation of lecithin: cholesterol acyl transferase by synthetic model apolipopeptides. Biochim Biophys Acta 793: 149–156

    CAS  Google Scholar 

  • Rafalski M, Ortiz A, Rockwell A, Van Ginkel L, Lear J, DeGrado W, Wilschut J (1991) Membrane fusion activity of the influenza virus hemagglutinin: Interaction of HA2 N-terminal peptides with phospholipid vesicles. Biochemistry 30: 10211–10220

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos J, Nir S, Düzgüneş N, Carvalho AP, Lima MCP (1993) A common mechanism for virus fusion activity and inactivation. Biochemistry 32: 2771–2779

    Article  PubMed  CAS  Google Scholar 

  • Rapaport D, Hague GR, Pouny Y, Shai Y (1993) pH- and ionic strength-dependent fusion of phospholipid vesicles induced by pardaxin analogues or by mixtures of charge-reversed peptides. Biochemistry 32: 3291–3297

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Choppin PW (1983) Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action. Virology 131: 518–532.

    Article  PubMed  CAS  Google Scholar 

  • Smoluchowski MV (191 7) Investigation into a mathematical theory of the kinetics of coagulation of collolidal solutions. Z Physik Chem (Leipzig) 92: 129–168

    Google Scholar 

  • Subbarao NK, Parente RA, Szoka FC, Nadasdi L, Pongracz K (1987) pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26: 2964–2972

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T, Hoekstra D, Scherphof G, Wilschut J (1985) Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24: 3107–3113

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T, White J, Helenius A (1990) Intermediates in influenza induced membrane fusion. EMBO J 9: 4231–4241

    PubMed  CAS  Google Scholar 

  • Takahashi S (1990) Conformation of membrane fusion-active 20- residual peptides with or without lipid bilayers. Implication of α-helix formation for membrane fusion. Biochemistry 29: 6257–6264

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JN, Klausner RD, Innerarity T, Ralston E, Blumenthal R (1981) Phase transition release, a new approach to the interaction of proteins with lipid vesicles. Biochim Biophys Acta 647: 270–274

    Article  PubMed  CAS  Google Scholar 

  • White SH, King GI (1985) Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci (USA) 82: 6532–6536

    Article  CAS  Google Scholar 

  • White J, Kielian M, Helenius A (1983) Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys 16: 151–195

    Article  PubMed  CAS  Google Scholar 

  • White JM, Wilson IA (1987) Anti-peptide antibodies detect steps in a protein conformational change: low pH activation of the influenza virus hemagglutinin. J Cell Biol 105: 2887–2896

    Article  PubMed  CAS  Google Scholar 

  • Wiischut J, Düzgüneş N, Papahadjopoulos D (1981) Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20: 3126–3133

    Article  Google Scholar 

  • Yoshimura T, Goto Y, Aimoto S (1992) Fusion of phospholipid vesicles induced by an amphiphilic model peptide: close correlation between fusogenicity and hydrophobicity of the peptide in an α-helix. Biochemistry 31: 6119–6126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nir, S., Fattal, E., Parente, R.A., Nieva, J.L., Wilschut, J., Szoka, F.C. (1995). Interactions of Peptides with Phospholipid Vesicles: Fusion, Leakage and Flip-Flop. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics