Skip to main content
Log in

Membrane destabilization by N-terminal peptides of viral envelope proteins

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The fusion of lipid enveloped viruses with cellular membranes is thought to be mediated by the insertion into the target membrane of the N-terminal polypeptides of viral spike glycoproteins. Since membrane destabilization is a necessary step in membrane fusion, we investigated whether synthetic peptides with amino acid sequences corresponding to the N-termini of influenza virus hemagglutinin (HA2), vesicular stomatitis virus G-protein and Sendai virus F-protein, induce the destabilization and fusion of phospholipid vesicles. Membrane destabilization by the peptides was monitored by the release of aqueous contents of large unilamellar phospholipid vesicles. Aggregation was detected by a resonance energy transfer assay. Membrane fusion was followed by means of assays for the intermixing of phospholipids and of aqueous contents. The 17-amino acid HA2 peptide (HA2.17) destabilized phosphatidylcholine (PC) vesicles even at neutral pH, but the rate and extent of destabilization increased at lower pH. This peptide did not mediate appreciable release of contents from phosphatidylserine (PS) vesicles. HA2.17 induced neither aggregation nor fusion of PC or PS vesicles. In contrast, the 7-amino acid N-terminal peptide of G-protein (G.7) destabilized PS-containing membranes and not pure PC vesicles. Although G.7 caused aggregation of and lipid mixing between PS vesicles, it did not mediate any detectable intermixing of aqueous contents. The presence of cholesterol in PC membranes did not affect the destabilization caused by the N-terminal peptide of Sendai virus F-protein (F1.7), suggesting that cholesterol is not necessary for the effective interaction of this peptide with membranes, contrary to earlier proposals. Our results support the hypothesis that the hydrophobic N-terminal region of certain viral envelope proteins insert into and destabilize target membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amselem, S., Barenholz, Y., Loyter, A., Nir, S., Lichtenberg, D. 1986. Fusion of Sendai virus with negatively charged liposomes as studied by pyrene-labelled phospholipid liposomes. Biochim. Biophys. Acta 860:301–313

    Article  CAS  PubMed  Google Scholar 

  • Asano, K., Asano, A. 1985. Why is a specific amino acid sequence of F glycoprotein required for the membrane fusion reaction between envelope of HVJ (Sendai virus) and target cell membranes? Biochem. Int. 10:115–122

    Google Scholar 

  • Asano, K., Murachi, T., Asano, A. 1983. Structural requirements for hemolytic activity of F-glycoprotein of HVJ (Sendai virus) studied by proteolytic digestion. J. Biochem. 93:733–741

    Google Scholar 

  • Bartlett, G.R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468

    Google Scholar 

  • Burger, K.N.J., Wharton, S.A., Demel, R.A., Verkleij, A.J. 1991. The interaction of synthetic analogs of the N-terminal fusion sequence of influenza virus with a lipid monolayer. Comparison of fusion-active and fusion-defective analogs. Biochim. Biophys. Acta 1065:121–129

    Google Scholar 

  • Chernomordik, L.V., Melikyan, G.B., Chizmadzhev, Y.A. 1987. Biomembrane fusion: A new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906:309–352

    Google Scholar 

  • Citovsky, V., Blumenthal, R., Loyter, A. 1985. Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes refleets the viral activity required for fusion with biological membranes. FEBS Lett. 193:135–140

    Google Scholar 

  • Doms, R.W., Helenius, A., White, J. 1985. Membrane fusion activity of the influenza hemagglutinin. The low pH-induced conformational change. J. Biol. Chem. 260:2973–2981

    Google Scholar 

  • Düzgüneş, N. 1985. Membrane fusion. In: Subcellular Biochemistry. D.B. Roodyn, editor. Vol. 11, pp. 195–286. Plenum, London

    Google Scholar 

  • Düzgüneş, N., 1988. Cholesterol and membrane fusion. In: Biology of Cholesterol. P.L. Yeagle, editor, pp. 197–212. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Düzgüneş, N., Allen, T.M., Fedor, J., Papahadjopoulos, D. 1987. Lipid mixing during membrane aggregation and fusion. Why fusion assays disagree. Biochemistry 26:8435–8442

    Google Scholar 

  • Düzgüneş, N., Bentz, J. 1988. Fluorescence assays for membrane fusion. In: Spectroscopic Membrane Probes. L.M. Loew, editor, pp. 117–159. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Düzgüneş, N., Gambale, F. 1988. Membrane action of synthetic peptides from influenza virus hemagglutinin and its mutants. FEBS Lett. 227:110–114

    Google Scholar 

  • Düzgüneş, N., Shavnin, S.A. 1988. Influence of synthetic peptides derived from viral envelope proteins on the permeability and fusion of phospholipid vesicles. Abstr. Frumkin Symposium on Bioelectrochemistry, Suzdal, USSR

  • Düzgüneş, N., Straubinger, R.M., Baldwin, P.A., Friend, D.S., Papahadjopoulos, D. 1985. Proton-induced fusion of oleic acid/phosphatidylethanolamine liposomes. Biochemistry 24:3091–3098

    Google Scholar 

  • Düzgüneş, N., Wilschut, J., Hong, K., Fraley, R., Perry, C., Friend, D.S., James, T.L., Papahadjopoulos, D. 1983. Physicochemical characterization of large unilamellar vesicles prepared by reverse-phase evaporation. Biochim. Biophys. Acta 732:289–299

    Google Scholar 

  • Eisenberg, D., Schwarz, E., Komoramy, M., Wall, R. 1984. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179:125–142

    Google Scholar 

  • Ellens, H., Bentz, J., Szoka, F.C. 1984. pH-induced destabilization of phosphatidylethanolamine-containing liposomes. Biochemistry 23:1532–1538

    Google Scholar 

  • Ellens, H., Bentz, J., Szoka, F.C. 1985. H+ and Ca2+-induced fusion and destabilization of liposomes. Biochemistry 24:3099–3106

    Google Scholar 

  • Geisow, M.J., Fritsche, V., Hexham, J.M., Dash, B., Johnson, T. 1986. A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320:636–638

    Google Scholar 

  • Gething, M.-J., Doms, R.W., York, D., White, J.M. 1986. Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol. 102:11–23

    Google Scholar 

  • Gething, M.J., White, J.M., Waterfield, M.D. 1978. Purification of the fusion protein of Sendai virus: Analysis of the NH2terminal sequence generated during precursor activation. Proc. Natl. Acad. Sci. USA 75:2737–2740

    Google Scholar 

  • Harter, C., James, P., Bächi, T., Semenza, G., Brunner, J. 1989. Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide.” J. Biol. Chem. 264:6459–6464

    CAS  PubMed  Google Scholar 

  • Hoekstra, D. 1982. Kinetics of intermixing of lipids and mixing of aqueous contents during vesicle fusion. Biochim. Biophys. Acta 692:171–175

    Google Scholar 

  • Hoekstra, D. 1990. Membrane fusion of enveloped viruses: Especially a matter of proteins. J. Bioenerg. Biomembr. 22:121–156

    CAS  PubMed  Google Scholar 

  • Hoekstra, D., Kok, J.W. 1989. Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci. Rep. 9:273–305

    Google Scholar 

  • Hoekstra, D., Wilschut, J. 1989. Membrane fusion of artificial and biological membranes: Role of local membrane dehydration. In: Water Transport in Biological Membranes. G. Benga, editor, pp. 143–176. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Hoyt, D.W., Gierasch, L.M. 1991. Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function. Biochemistry 30:10155–10163

    Google Scholar 

  • Hsu, M.C., Scheid, A., Choppin, P.W. 1981. Activation of the Sendai virus fusion protein (F) involves a conformational change with exposure of a new hydrophobic region. J. Biol. Chem. 256:3557–3563

    Google Scholar 

  • Kelsey, D.R., Flanagan, T.D., Young, J., Yeagle, P.L. 1990. Peptide inhibitors of enveloped virus infection inhibit phospholipid vesicle fusion and Sendai virus fusion with phospholipid vesicles. J. Biol. Chem. 265:12178–12183

    Google Scholar 

  • Killian, J.A., de Jong, A.M.P., Bijvelt, J., Verkleij, A.J., de Kruijff, B. 1990. Induction of non-bilayer lipid structures by functional signal peptides. EMBO J. 9:815–819

    Google Scholar 

  • Klappe, K., Wilschut, J., Nir, S., Hoekstra, D. 1986. Parameters affecting fusion between Sendai virus and liposomes. Role of viral proteins liposome composition and pH. Biochemistry 25:8252–8260

    Google Scholar 

  • Kowalski, M., Potz, J., Basiripour, L., Dorfman, T., Goh, W.C., Terwilliger, E., Dayton, A., Rosen, C., Haseltine, W., Sodroski, J. 1987. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355

    Google Scholar 

  • Lear, J.D., De Grado, W.F. 1987. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza virus. J. Biol. Chem. 262:6500–6505

    Google Scholar 

  • Leikin, S.L., Kozlov, M.M., Chernomordik, L.V., Markin, V.S., Chizmadzhev, Y.A. 1987. Membrane fusion: Overcoming the hydration barrier and local restructuring. J. Theor. Biol. 129:411–425

    Google Scholar 

  • Marsh, M., Helenius, A. 1989. Virus entry into animal cells. Adv. Virus Res. 36:107–151

    Google Scholar 

  • Murata, M., Sugahara, Y., Takahashi, S., Ohnishi, S.-I. 1987. pH-Dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. J. Biochem. 102:957–962

    Google Scholar 

  • Nir, S., Klappe, K., Hoekstra, D. 1986. Mass action analysis of kinetics and extent of fusion between Sendai virus and liposomes. Biochemistry 25:8261–8266

    Google Scholar 

  • Norrby, E. 1971. The effect of a carbobenzoxy tripeptide on the biological activities of measles virus. Virology 44:599–608

    Google Scholar 

  • Novick, S.L., Hoekstra, D. 1988. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling. Proc. Natl. Acad. Sci. USA 85:7433–7437

    Google Scholar 

  • Ohki, S. 1988. Surface tension, hydration energy and membrane fusion. In: Molecular Mechanisms of Membrane Fusion. S. Ohki, D. Doyle, T.D. Flanagan, S.K. Hui, and E. Mayhew, editors, pp. 123–138. Plenum, New York

    Google Scholar 

  • Ohki, S., Düzgüneş, N. 1979. Divalent cation-induced interaction of phospholipid vesicles and monolayer membranes. Biochim. Biophys. Acta 552:438–449

    Google Scholar 

  • Ohnishi, S. 1988. Fusion of viral envelopes with cellular membranes. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection. N. Düzgüneş and F. Bronner, editors, pp. 257–296. Academic, New York

    Google Scholar 

  • Okada, Y. 1988. Sendai virus-mediated cell fusion. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection. N. Düzgüneş and F. Bronner, editors, pp. 297–336. Academic, New York

    Google Scholar 

  • Parente, R.A., Nir, S., Szoka, F.C., Jr. 1988. pH-dependent fusion of phosphatidylcholine small vesicles. J. Biol. Chem. 263:4724–4730

    Google Scholar 

  • Parente, R.A., Nir, S., Szoka, F.C., Jr. 1990. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29:8720–8728

    Google Scholar 

  • Pedroso de Lima, M.C., Nir, S., Flasher, D., Klappe, K., Hoekstra, D., Düzgüneş, N. 1991. Fusion of Sendai virus with human HL-60 and CEM cells: Different kinetics of fusion for two isolates. Biochim. Biophys. Acta 1070:446–454

    Google Scholar 

  • Puri, A., Booy, F.P., Doms, R.W., White, J.M., Blumenthal, R. 1990. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: Effects of acid pretreatment. J. Virol. 64:3824–3832

    Google Scholar 

  • Rafalski, M., Ortiz, A., Rockwell, A., van Ginkel, L.C., Lear, J.D., DeGrado, W.F., Wilschut, J. 1991. Membrane fusion activity of the influenza virus hemagglutinin: Interaction of HA2 N-terminal peptides with phospholipid vesicles. BioChemistry 30:10211–10220

    Google Scholar 

  • Richardson, C.D., Scheid, A., Choppin, P.W. 1980. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology 105:205–222

    Google Scholar 

  • Rosenberg, J., Düzgüneş, N., Kayalar, C. 1983. Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components. Biochim. Biophys. Acta 735:173–180

    Google Scholar 

  • Ruigrok, R.W.H., Wrigley, N.G., Calder, L.J., Cusak, S., Wharton, S.A., Brown, E.B., Skehel, J.J. 1986. Electron microscopy of the low pH structure of influenza virus hemagglutinin. EMBO J. 5:41–49

    Google Scholar 

  • Sato, S.B., Kawasaki, K., Ohnishi, S.-I. 1983. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc. Natl. Acad. Sci. USA 80:3153–3157

    Google Scholar 

  • Schlegel, R., Tralka, S.T., Willingham, M.C., Pastan, I. 1983. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV binding site? Cell 32:639–646

    Google Scholar 

  • Schlegel, R., Wade, M. 1984a. Biologically active peptides of the vesicular stomatitis virus glycoprotein. J. Virol. 53:319–323

    Google Scholar 

  • Schlegel, R., Wade, M. 1984b. A synthetic peptide corresponding to the NH2 terminus of vesicular stomatitis virus glycoprotein is a pH-dependent hemolysin. J. Biol. Chem. 259:4691–4694

    Google Scholar 

  • Shiffer, K., Hawgood, S., Düzgünes, N., Goerke, J. 1988. The interactions of the low molecular weight group of surfactantassociated proteins (SP 5–18) with pulmonary surfactant lipids. Biochemistry 27:2689–2695

    Google Scholar 

  • Skehel, J.J., Bayley, P.M., Brown, E.B., Martin, S.R., Waterfield, M.D., White, J.M., Wilson, I.A., Wiley, D.C. 1982. Changes in the conformation of influenza hemagglutinin at the pH optimum of virus mediated membrane fusion. Proc. Natl. Acad. Sci. USA 79:968–972

    Google Scholar 

  • Spear, P.G. 1987. Virus-induced cell fusion. In: Cell Fusion. A.E. Sowers, editor, pp. 3–32. Plenum, New York

    Google Scholar 

  • Stegmann, T., Doms, R.W., Helenius, A. 1989. Protein-mediated membrane fusion. Annu. Rev. Biophys. Chem. 18:187–211

    Google Scholar 

  • Stegmann, T., Hoekstra, D., Scherphof, G., Wilschut, J. 1986. Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J. Biol. Chem. 261:10966–10969

    Google Scholar 

  • Struck, D.K., Hoekstra, D., Pagano, R.E. 1981. Use of resonance energy transfer to monitor fusion. Biochemistry 20:4093–4099

    Google Scholar 

  • Subbarao, N.K., Parente, R.A., Szoka, F.C., Jr., Nadasdi, L., Pongracz, K. 1987. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26:2964–2972

    Google Scholar 

  • Suenaga, M., Lee, S., Park, N.G., Aoyagi, H., Kato, T., Umeda, A., Amako, K. 1989. Basic amphipathic helical peptides induce destabilization and fusion of acidic and neutral liposomes. Biochim. Biophys. Acta 981:143–150

    Google Scholar 

  • Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E., Papahadjopoulos, D. 1980. Preparation of unilamellar liposomes of intermediate size (0.1–0.2 μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim. Biophys. Acta 601:559–571

    Google Scholar 

  • Wharton, S.A., Martin, S.R., Ruigrok, R.W.H., Skehel, J.J., Wiley, D.C. 1988. Membrane fusion by peptide analogues of influenza virus hemagglutinin. J. Gen. Virol. 69:1847–1857

    Google Scholar 

  • White, J., Kielian, M., Helenius, A. 1983. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16:151–195

    Google Scholar 

  • White, J.M., Wilson, I.A. 1987. Anti-peptide antibodies detect steps in a protein conformational change: Low pH activation of the influenza virus hemagglutinin. J. Cell Biol. 105:2887–2896

    Google Scholar 

  • Wilschut, J., Düzgüneş, N., Papahadjopoulos, D. 1981. Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20:3126–3133

    Google Scholar 

  • Woodget, C., Rose, J.K. 1986. Amino-terminal mutation of the vesicular stomatitis virus glycoprotein does not affect its fusion activity. J. Virol. 59:486–489

    Google Scholar 

  • Yeagle, P.L., Epand, R.M., Richardson, C.D., Flanagan, T.D. 1991. Effects of the ‘fusion peptide’ from measles virus on the structure of N-methyl dioleoylphosphatidyl-ethanolamine membranes and their fusion with Sendai virus. Biochim. Biophys. Acta 1065:49–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by NIH Grant AI25534 (N.D.), US-Israel Binational Science Foundation Grant 86-00010 (S. Nir & N.D.), and grants from the UCSF School of Medicine (MSC-25) and Academic Senate (N.D.). Dr. S. Shavnin was the recipient of an International Research & Exchanges Board (IREX) Fellowship. We thank Mr. Dennis Alford for technical assistance and Dr. D. Papahadjopoulos (UCSF) for discussions and the use of his laboratory facilities. We are indebted to Dr. S. Nir (Hebrew University of Jerusalem and University of the Pacific) for many helpful discussions and comments on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düzgüneş, N., Shavnin, S.A. Membrane destabilization by N-terminal peptides of viral envelope proteins. J. Membarin Biol. 128, 71–80 (1992). https://doi.org/10.1007/BF00231872

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231872

Key Words

Navigation