Skip to main content

Skeletal Muscle Ventricles for Biologic Cardiac Assistance

  • Chapter
Assisted Circulation 4
  • 69 Accesses

Abstract

Skeletal muscle was first introduced to cardiac surgery between 1930 and 1940. In 1931, De Jesus used pectoralis muscle to repair a penetrating cardiac injury in a young man [1]. Two years later, Leriche and Fontaine applied a pectoralis major muscle graft to the surface of infarcted canine myocardium in order to reinforce the myocardial scar [2]. After a few months, the grafts were found to be viable and well incorporated into the surrounding myocardial tissue. In 1935, Beck experimentally demonstrated the development of collateral blood flow from muscle grafts to the canine epicardium [3]. In his study, after application of the muscle graft to the myocardium, both coronary arteries were gradually occluded. Over a period of weeks, communication between the skeletal muscle and coronary circulations formed. After that Beck and others applied nonstimulated muscle grafts and other tissues to the ischemic hearts of human beings for the treatment of coronary artery disease [4, 5].

Supported by NIH Grant HL 34778

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Jesus FR (1931) Breve consideraciones sobre un case de herida penetrante del corazon. Bol Assoc Med P R 23:380–382

    Google Scholar 

  2. Leriche R (1933) Essai experimental de traitement de certains infarctus du myocarde et de l’aneurisme de coeur par une graffe muscle strie. Bull Soc Nat Chir 9:229–232

    Google Scholar 

  3. Beck CS (1935) A new blood supply to the heart by operation. Surg Gynecol Obstet 61:407–410

    Google Scholar 

  4. Beck CS (1937) Coronary sclerosis and angina pectoris: treatment by grafting a new blood supply upon the myocardium. Surg Gynecol Obstet 64:270–272

    Google Scholar 

  5. Beck CS (1936) Further data on the establishment of a new blood supply to the heart by operation. J Thorac Surg 5:604–611

    Google Scholar 

  6. Petrovsky BV (1961) The use of the diaphragm graft for plastic operations in thoracic surgery. J Thorac Cardiovasc Surg 41:348–355

    PubMed  CAS  Google Scholar 

  7. Petrovsky BV (1959) The use of diaphragmatic flaps for plastic purpose in thoracic surgery. Chest Surgery (Moscow) 51:73–80

    Google Scholar 

  8. Kantrowitz A, McKinnon W (1959) The experimental use of the diaphragm as an auxiliary myocardium. Surg Forum 9:266–268

    Google Scholar 

  9. Kantrowitz A (1960) Functioning autogenous muscle used experimentally as an auxiliary ventricle. Trans Am Soc Artif Intern Organs 68:305–307

    Google Scholar 

  10. Kusaba E, Schraut W, Sawatani S (1973) A diaphragmatic graft for augmenting left ventricular function: a feasibility study. Trans Am Soc Artif Intern Organs 19:251–257

    PubMed  CAS  Google Scholar 

  11. Nakamura K, Glenn WWL (1964) Graft of the diaphragm as a functioning substitute for the myocardium. J Surg Res 4:435–439

    Article  PubMed  CAS  Google Scholar 

  12. Termet H, Chalencon JL, Estour E et al. (1966) Transplantation sur le myocarde d’un muscle strie excit’ pace maker. Ann Chir Thorac Cardiovasc 5:568

    Google Scholar 

  13. Scheperd MP (1969) Diaphragmatic muscle and cardiac surgery. Ann R Coll Surg Engl 45:212–231

    Google Scholar 

  14. Drinkwater DC, Chiu RC-J, Modry D et al. (1980) Cardiac assist and myocardial repair with synchronously stimulated skeletal muscle. Surg Forum 31:271–273

    Google Scholar 

  15. Macoviak JA, Stephenson LW, Spielman S et al. (1980) Electrophysiologic and mechanical characteristics of diaphragmatic autograft used to enlarge right ventricle. Surg Forum 31:270–271

    Google Scholar 

  16. Macoviak JA, Stephenson LW, Spielman S et al. (1981) Replacement of ventricular myocardium with diaphragmatic skeletal muscle. J Thorac Cardiovasc Surg 81:519–527

    PubMed  CAS  Google Scholar 

  17. Macoviak JA, Stephenson LW, Alavi A, Kelly AM, Edmunds LH Jr (1981) Effect of electrical stimulation on diaphragmatic muscle used to enlarge right ventricle. Surgery 90:271–277

    PubMed  CAS  Google Scholar 

  18. Macoviak JA, Stephenson LW, Kelly AM, Likoff MJ, Riechek N, Edmunds LH Jr (1981) Partial replacement of the right ventricle with a synchronously contracting diaphragmatic skeletal muscle autograft. Proceedings of the 3rd Meeting of the International Society for Artif Organs, 1981, vol 5, suppl, pp 550–555

    Google Scholar 

  19. Schaff HV, Arnold PG, Reeder GS (1982) Late mediastinal infection and pseudoaneurysm following left ventricular aneurysmectomy repair utilizing pectoralis major muscle flap. J Thorac Cardiovasc Surg 84:912–916

    PubMed  CAS  Google Scholar 

  20. Carpentier A, Chachques JC (1985) Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet i:1267

    Article  Google Scholar 

  21. Magovern GJ, Park SB, Magovern GJ Jr et al. (1986) Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann Thorac Surg 41:116

    Article  PubMed  CAS  Google Scholar 

  22. von Recum A, Stule JP, Hamada O et al. (1977) Long-term stimulation of diaphragm muscle pouch. J Surg Res 23:422–427

    Article  Google Scholar 

  23. Spotnitz HM, Merker C, Malm JR (1974) Applied physiology of the canine rectus abdominis: force-length curves correlated with functional characteristics of a rectus-powered “ventricle”: potential for cardiac assistance. Trans Am Soc Artif Intern Organs 20:747–756

    PubMed  Google Scholar 

  24. Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370–447

    Google Scholar 

  25. Juffe A, Ricoy JR et al. (1978) Cardialization: a new source of energy for circulatory assistance. Vase Surg 12:10–17

    Google Scholar 

  26. Mocek FW, Anderson DR, Pochettino A et al. (1992) Skeletal muscle ventricles in circulation long-term: one hundred ninety-one to eight hundred thirty-six days. J Heart Lung Transplant 11:S334-S340

    PubMed  CAS  Google Scholar 

  27. Adams FR, Schwartz A (1980) Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest 78:123–139

    PubMed  CAS  Google Scholar 

  28. Pette D, Muller W, Leisner E, Vrbova G (1976) Time-dependent effects on contractile properties, fibre population, myosin light chain and enzymes of energy metabolism in intermittently and continuously stimulated fast-twitch muscle of the rabbit. Pflugers Arch 364:103

    Article  PubMed  CAS  Google Scholar 

  29. Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  PubMed  CAS  Google Scholar 

  30. Mommaerts WFHM (1982) Heart muscle. In: Fishman AP, Richards DW (eds) Circulation of the blood, man and ideas. American Physiological Society, Bethesda, pp 127–198

    Google Scholar 

  31. Buller JC, Eccles JC, Eccles RM (1960) Differentiation of fast and slow muscles in the cat hind limb. J Physiol 150:399–416

    PubMed  CAS  Google Scholar 

  32. Mannion JD, Velchik M, Acker MA, Hammond RL, Alavi A, Stephenson LW (1986) Transmural blood flow to multi-layered latissimus dorsi skeletal muscle ventricles during circulatory assistance. Trans Am Soc Artif Intern Organs 32:454–460

    CAS  Google Scholar 

  33. Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 210:535–549

    Google Scholar 

  34. Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4:94–105

    Article  PubMed  CAS  Google Scholar 

  35. Pette D (1984) Activity-induced fast to slow transitions in mammalian muscle. Med Sei Sports Exerc 16:517–528

    CAS  Google Scholar 

  36. Chi MMY, Hintz CS, Henriksson J et al. (1986) Chronic stimulation of mammalian muscle: enzyme changes in individual fibers. J Physiol 251:C633-C642

    CAS  Google Scholar 

  37. Mannion J, Hammond RL, Stephenson LW (1986) Hydraulic pouches of canine latissimus dorsi: potential for left ventricular assistance. J Thorac Cardiovasc Surg 91:534–544

    PubMed  CAS  Google Scholar 

  38. Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1986) An autologous biologic pump motor. J Thorac Cardiovasc Surg 94:733–746

    Google Scholar 

  39. Mannion JD, Acker MA, Hammond RL, Faltemeyer W, Duckett S, Stephenson LW (1987) Power output of skeletal muscle ventricles in circulation: short-term studies. Circulation 76:155–162

    Article  PubMed  CAS  Google Scholar 

  40. Acker MA, Anderson WA, Hammond RL et al. (1987) Skeletal muscle ventricles in circulation: one to eleven weeks’ experience. J Thorac Cardiovasc Surg 94:163–174

    PubMed  CAS  Google Scholar 

  41. Dewar ML, Drinkwater DC, Wittnich C, Chiu RC-J (1984) Synchronously stimulated skeletal muscle graft for myocardial repair. J Thorac Cardiovasc Surg 87:325–331

    PubMed  CAS  Google Scholar 

  42. Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1987) Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324–327

    Article  PubMed  CAS  Google Scholar 

  43. Chiu RCJ, Garret LW, Dewar LD, De Simon JH, Khalafalla AS, Ianuzzo D (1987) Implantable extra-aortic baloon assist powered by transformed fatigue-resistant skeletal muscle. J Thorac Cardiovasc Surg 94:694–701

    PubMed  CAS  Google Scholar 

  44. Salmons S, Stephenson LW (1989) Adaptive capacity of skeletal muscle and its therapeutic applications. In: Neuromuscular. Maple-Vail, New York

    Google Scholar 

  45. Salmons S, Sreter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    Article  PubMed  CAS  Google Scholar 

  46. Salmons S, Jarvis JC (1990) Cardiomyoplasty: the basic issues. Cardiac Chronicle 4:1–6

    Google Scholar 

  47. Leberer E, Seedorf U, Pette D (1986) Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem J 239:295–300

    PubMed  CAS  Google Scholar 

  48. Pette DL, Vrbova G (1985) Neural control of phenotype expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    Article  PubMed  CAS  Google Scholar 

  49. Macoviak JA, Stephenson LW, Armenti F et al. (1982) Electrical conditioning of in situ skeletal muscle for replacement of myocardium. J Surg Res 32:429–439

    Article  PubMed  CAS  Google Scholar 

  50. Armenti FR, Bitto T, Macoviak JA et al. (1984) Transformation of canine diaphragm to fatigue- resistant muscle by phrenic nerve stimulation. Surg Forum 35:258–269

    Google Scholar 

  51. Bitto T, Mannion JD, Hammond RL et al. (1986) Pectoralis and rectus abdominus muscle for potential correction of congenital heart defect. Proceedings of the 2nd World Congress on Pediatric Cardiology, pp 609–612

    Google Scholar 

  52. Mannion JD, Bitto T, Hammond RL, Rubinstein N, Stephenson LW (1986) Histochemical and fatigue characteristics of conditioned latissimus dorsi muscle. Circ Res 58:298–304

    PubMed  CAS  Google Scholar 

  53. Clark BJ, Acker MA, Subramanian H et al. (1988) In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle. Am J Physiol 2545:C258-C266

    Google Scholar 

  54. Acker MA, Anderson WA, Hammond RL, Stephenson LW (1987) Oxygen consumption of faitigue-resistant muscle. J Thorac Cardiovasc Surg 94:702–709

    PubMed  CAS  Google Scholar 

  55. Acker MA, Mannion JD, Brown WE et al. (1987) Canine diaphragm muscle after one year of continuous electrical stimulation: its potential as a myocardial substitute. J Appl Physiol 62:1264–1270

    PubMed  CAS  Google Scholar 

  56. Mannion JD, Velchik M, Hammond RL et al. (1989) Effects of collateral blood vessel ligation and electrical conditioning on blood flow in dog latissimus dorsi muscle. J Surg Res 47:332–340

    Article  PubMed  CAS  Google Scholar 

  57. Stevens L, Brown J (1986) Can noncardiac muscle provide useful cardiac assistance? Am Surg 52:423–427

    PubMed  CAS  Google Scholar 

  58. Bridges CR Jr, Brown WE, Hammond RL et al. (1989) Skeletal muscle ventricles: improved performance at physiologic preloads. Surgery 106:275–282

    PubMed  Google Scholar 

  59. Bridges CR Jr, Woodford EJ, Mora G, Anderson DR, Stephenson LW, Norwood WI (1990) Use of skeletal muscle power to augment the pulmonary circulation. Surg Forum 41:267–271

    Google Scholar 

  60. Bridges CR Jr, Hammond RL, DiMeo F, Stephenson LW (1989) Functional right heart replacement with a skeletal muscle ventricle. Circulation 80[Suppl III]:183–191

    Google Scholar 

  61. Niinami H, Hooper TL, Hammond RL et al. (1992) Skeletal muscle ventricles in the pulmonary circulation: up to sixteen weeks’ experience. Ann Thorac Surg 53:750–757

    Article  PubMed  CAS  Google Scholar 

  62. Anderson DR, Pochettino A, Hammond RL et al. (1991) Autogenously lined skeletal muscle ventricles in circulation: up to nine months’ experience. J Thorac Cardiovasc Surg 101:661–670

    PubMed  CAS  Google Scholar 

  63. Ruggiero R, Niinami H, Pochettino A et al. (1991) Skeletal muscle ventricles: update after 18 months in circulation. Artif Organs 15:350–354

    Article  PubMed  CAS  Google Scholar 

  64. Ruggiero R, Anderson DR, Niinami H et al. (1991) Skeletal muscle ventricles in circulation: 24-month update. BAM 1:129–137

    Google Scholar 

  65. Pochettino A, Lu H, Hammond RL et al. (1992) Skeletal muscle ventricles in circulation with improved thromboresistance: up to 28 weeks’ experience. Ann Thorac Surg 53:1025–1032

    Article  PubMed  CAS  Google Scholar 

  66. Fietsam R Jr, Huiping Lu, Hammond BA, Gregory AT, Nakajima H, Stephenson LW (1993) Skeletal muscle ventricles with efferent valved homograft. J Card Surg 8:184–194

    Article  PubMed  Google Scholar 

  67. Hooper TL, Niinami H, Hammond RL et al. (1992) Skeletal muscle ventricles as left atrial-aortic pumps: short-term studies. Ann Thorac Surg 54:316–322

    Article  PubMed  CAS  Google Scholar 

  68. Lu H, Fietsam R Jr, Hammond RL et al. (1993) Skeletal muscle ventricles: left ventricular apex to aorta configuration. Ann Thorac Surg 55:78–85

    Article  PubMed  CAS  Google Scholar 

  69. Zweifach BW (1974) Quantitation studies of microcirculation structure and function. I. Analysis of pressure distribution in terminal vascular bed in cat mesentry. Circ Res 34:843–857

    PubMed  CAS  Google Scholar 

  70. Renkin EM (1984) Control microcirculation and blood-tissue exchange. In: Handbook of physiology, sect 2: the cardiovascular system - microcirculation. American Physiological Society, Bethesda

    Google Scholar 

  71. Stevens L, Badylak SF, Janas W, Gray MH, Geddes LA, Voorhees WD III (1989) A skeletal muscle ventricle made from rectus abdominis muscle in the dog. J Surg Res 46:84–89

    Article  PubMed  CAS  Google Scholar 

  72. Neilson IR, Brister SJ, Khalafalla AS, Chiu RC-J (1985) Left ventricular assistance in dogs using a skeletal muscle-powered device for diastolic augmentation. J Heart Trans 4:343–347

    CAS  Google Scholar 

  73. Brister S, Fradet G, Dewar M, Wittnich C, Lough J, Chiu RC-J (1985) Transforming skeletal muscle for myocardial assist: a feasibility study. Can J Surg 28:341–344

    PubMed  CAS  Google Scholar 

  74. Platt KL, Moore TW, Barnea O, Dubin SE, Jaron D (1993) Performance optimization of left ventricular assistance. A computer model study. ASAIO 39:29–38

    CAS  Google Scholar 

  75. Voytik SL, Babbs CF, Badylak SF (1990) Simple electrical model of the circulation of explore design parameters for a skeletal muscle ventricle. J Heart Trans 9:160–174

    CAS  Google Scholar 

  76. Herring MB, Baughman S, Glover JL (1985) Endothelium develops on seeded human arterial prosthesis: a brief clinical report. J Vasc Surg 2:727–730

    PubMed  CAS  Google Scholar 

  77. Ortenwall P, Wadenvik H, Kutti J, Risberg B (1990) Endothelial cell seeding reduces thrombogenicity of Dacron grafts in humans. J Vasc Surg 11:403–410

    Article  PubMed  CAS  Google Scholar 

  78. Bernhard WF (1988) A fibrillar blood prosthetic interface for both temporary and permanent ventricular assist devices: experimental and clinical observations. Artif Organs 12:89–111

    Google Scholar 

  79. Lelkes PI, Samet MM (1991) Endothelialization of the luminal sac in artificial cardiac prosthesis: a challenge for both biologists and engineers. J Biomech Eng 113:132–142

    Article  PubMed  CAS  Google Scholar 

  80. Nakajima H, Nakajima HO, Gregory AT et al. (1993) Chronic morphologic changes of skeletal muscle ventricles in circulation. Ann Thorac Surg (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, H., Hammond, R.L., Thomas, G.A., Stephenson, L.W. (1995). Skeletal Muscle Ventricles for Biologic Cardiac Assistance. In: Unger, F. (eds) Assisted Circulation 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79340-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79340-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79342-4

  • Online ISBN: 978-3-642-79340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics