Skip to main content

Petrology and Geochemistry of Oldoinyo Lengai Lavas Extruded in November 1988: Magma Source, Ascent and Crystallization

  • Chapter
Carbonatite Volcanism

Part of the book series: IAVCEI Proceedings in Volcanology ((VOLCANOLOGY,volume 4))

Abstract

Lavas erupted from Oldoinyo Lengai in November, 1988, carry phenocrysts of the alkali carbonates nyerereite and gregoryite, with inclusions of apatite. They are set in a matrix of microphenocrysts of nyerereite and gregoryite wih tiny grains of (Mn, Fe)S, MnFe spinel, sodic sylvite, Na- and Si-rich apatite, spurrite, and intergrowths of sylvite, fluorite and a phase similar to nyerereite. The matrix also contains an unidentified complex carbonate? of Ca, Ba, Sr, K and Na. All phases represent solid solutions (attributed to the high-temperature crystallization of the chemically complex dominantly carbonate liquid) that are very rare or not previously reported.

Chemically, the lavas are very similar to those erupted in 1960, containing high amounts of Na2O, K2O, CaO, CO2 and lesser, but nonetheless significant, amounts of BaO, SrO, Cl, F, P5O5 and SO3. Trace element concentrations and REE patterns indicate that the carbonatite is highly fractionated. Compositional variations arise mainly between phenocryst-rich and aphyric varieties, with the aphyric variety being richer in K, Ba, Cl, F and Rb. More subtle variations in Fe, Mn, Pb and Zn may reflect groundmass sulphide sedimentation. The isotope ratios of carbon, oxygen and sulphur are similar to those in other primary carbonatites. Lead and thorium isotope data, combined with previously published Sr and Nd isotope data, indicate that the carbonate magma originates from an upper mantle source with the same isotopic characteristics as mantle sources for ocean island basalts. The isotopic data provide no evidence for interaction between crustal material and the carbonatite or its parental magma during ascent from the mantle source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre CJ, Dupré B, Lewin E (1986) Thorium/uranium ratio of the earth. Chem Geol 56:219–227.

    Article  Google Scholar 

  • Bell K, Blenkinsop J (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 15:99–102.

    Article  Google Scholar 

  • Capaldi G, Cortini M, Pece R (1982) Th isotopes at Vesuvius: evidence for open-system behaviour of magma-forming processes. J Volcanol Geotherm Res 14:247–260.

    Article  Google Scholar 

  • Clarke DB (1979) Synthesis of nickeloan djerfisherites and the origin of potassic sulphides at the Frank Smith Mine. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics. Am Geophys Union, Washington DC, pp 300–308.

    Chapter  Google Scholar 

  • Cohen RS, O’Nions RK (1982) The lead, neodymium and strontium isotopic structure of ocean ridge basalts. J Petrol 23:299–324.

    Google Scholar 

  • Cohen RS, O’Nions RK, Dawson JB (1984) Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interactions. Earth Planet Sci Lett 68:209–220.

    Article  Google Scholar 

  • Colville AA, Colville PA (1977) Paraspurrite, a new polymorph of spurrite from Inyo County, California. Am Mineral 62:1003–1005.

    Google Scholar 

  • Czamanske GK, Lanphere MA, Erd RC, Blake MC (1978) Age measurements of potassiumbearing sulfide minerals by the 40Ar/39Ar technique. Earch Planet Sci Lett 40:107–110.

    Article  Google Scholar 

  • Czamanske GK, Erd RC, Sokolova MJ, Dobrovolskaya MJ, Dmitrieva MT (1979) New data on rasvumite and djerflsherite. Am Mineral 64:776–778.

    Google Scholar 

  • Davies GR, Macdonald R (1987) Crustal influences in the petrogenesis of the Naivaska basaltcomendite complex: combined trace element and Sr-Nd-Pb isotope constraints. J Petrol 28:1009–1031.

    Google Scholar 

  • Dawson JB (1962a) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195:1075–1076.

    Article  Google Scholar 

  • Dawson JB (1962b) The geology of Oldoinyo Lengai. Bull Volcanol 24:349–387.

    Article  Google Scholar 

  • Dawson JB, Bowden P, Clark GC (1968) Activity of the carbonatite volcano Oldonyo Lengai, 1966. Geol Rundsch 57:865–879.

    Article  Google Scholar 

  • Dawson JB, Pinkerton H, Norton GE, Pyle DM (1990) Physicochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Oldoinyo Lengai, Tanzania. Geology 18:260–263.

    Article  Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1992) 1966 ash eruption of Oldoinyo Lengai: mineralogy of lapilli, and mixing of carbonatite and silicate magma. Min Mag 56:1–16.

    Article  Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 301–359.

    Google Scholar 

  • Du Bois CGB, Fürst, Guest NJ, Jennings DJ (1963) Fresh natrocarbonatite lava from Oldoinyo L’Engai. Nature 197:445–446.

    Article  Google Scholar 

  • Dupré B, Allègre CJ (1983) Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303:142–146.

    Article  Google Scholar 

  • Gill JB, Pyle DM, Williams RW (1992) Igneous rocks. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to earth, marine and environmental sciences. Oxford University Press, Oxford, pp 207–258.

    Google Scholar 

  • Gittins J, McKie D (1980) Alkalic carbonatite magmas: Oldoinyo Lengai and its wider applicability. Lithos 13:213–215.

    Article  Google Scholar 

  • Grünenfelder MH, Tilton GR, Bell K, Blenkinsop J (1986) Lead and strontium isotope relationships in the Oka carbonatite complex, Quebec. Geochim Cosmochim Acta 50:461–468.

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757.

    Article  Google Scholar 

  • Hay RL (1989) Holocene carbonatite-nephelinite tephra deposits of Oldoinyo Lengai, Tanzania. J Volcanol Geotherm Res 37:77–91.

    Article  Google Scholar 

  • Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 105–148.

    Google Scholar 

  • Javoy M, Pineau F, Cheminée JL, Krafft M (1988) The gas magma relationship in the 1988 eruption of Oldoinyo Lengai (Tanzania). EOS 69:1466.

    Google Scholar 

  • Keller J, Krafft M (1989) Composition of natrocarbonatite lavas, Oldoinyo Lengai 1988. TERRA Abstr 1:286.

    Google Scholar 

  • Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645.

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 388–404.

    Google Scholar 

  • Krafft M, Keller J (1989) Temperature measurements in carbonatite lava lakes and flows from Oldoinyo Lengai, Tanzania. Science 245:168–170.

    Article  Google Scholar 

  • Kwon ST, Tilton GR, Grünenfelder MH (1989) Lead isotope relationships in carbonatites and alkalic complexes: an overview. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 360–387.

    Google Scholar 

  • Lancelot JR, Allègre CJ (1974) Origin of carbonatitic magma in the light of the Pb-U-Th isotope system. Earth Planet Sci Lett 22:223–238.

    Article  Google Scholar 

  • Mason B (1947) Mineralogical aspects of the system Fe3O4-Mn3O4-ZnMn2O4-ZnFe2O4. Amer Mineral 32:426–447.

    Google Scholar 

  • McKie D, Frankis EJ (1977) Nyerereite: a new volcanic carbonate mineral from Oldoinyo L’engai. Tanzania. Z Kristallogr 145:73–95.

    Article  Google Scholar 

  • Mitchell RH, Krouse HR (1975) Sulphur isotope geochemistry of carbonatites. Geochim Comochim Acta 39:1505–1513.

    Article  Google Scholar 

  • Newman S, Finkel RC, MacDougall JD (1983) 230Th-238U disequilibrium systematics in oceanic tholeiites from 21 °N on the East Pacific Rise. Earth Planet Sci Lett 65:17–33.

    Article  Google Scholar 

  • Newman S, Finkel RC, MacDougall JD (1984) Comparison of 230Th-238U disequilibrium systematics in lavas from three hotspot regions Hawaii, Prince Edward and Samoa. Geochim Cosmochim Acta 48:315–324.

    Article  Google Scholar 

  • Norry MJ, Truckle PH, Lippard SJ, Hawkesworth CJ, Weaver SD, Marriner GF (1980) Isotopic and trace element evidence from lavas, bearing on mantle heterogeneity beneath Kenya. Philos Trans R Soc Lond A297:259–271.

    Google Scholar 

  • Nyamweru C (1988) Activity of Ol Doinyo Lengai volcano, Tanzania,. 1983-1987. J Afr Earth Sci 7:603–610.

    Article  Google Scholar 

  • O’Neil JR, Hay RL (1973) 18O/16O ratios in cherts associated with the saline lake deposits of East Africa. Earth Planet Sci Lett 19:257–266.

    Article  Google Scholar 

  • Oversby V, Gast PW (1968) Lead isotope composition and uranium decay series disequilibrium in recent volcanic rocks. Earth Planet Sci Lett 5:199–206.

    Article  Google Scholar 

  • Peterson TD (1990) Petrology and genesis of natrocarbonatite. Contrib Mineral Petrol 105:143–155.

    Article  Google Scholar 

  • Pyle DM, Dawson JB, Ivanovich M (1991) Short-lived decay series disequilibria in the natro carbonatite lavas of Oldoinyo Lengai, Tanzania: constraints on the timing of magma genesis. Earth Planet Sci Lett 105:378–396.

    Article  Google Scholar 

  • Ramdohr P (1957) Eisenalabandin, ein merkwurdiger natürlicher Hochtemperatur-Mischkristall. N Jahrb Mineral Abh 91:89–93.

    Google Scholar 

  • Rønsbo JG (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. Am Mineral 74:896–901.

    Google Scholar 

  • Sheppard SMF, Dawson JB (1973) 13C/12C and D/H isotope variations in primary igneous carbonatites. Fortsch Mineral 50:128–129.

    Google Scholar 

  • Shive PN, Nyblade AA, Wittke JH (1990) Magnetic properties of some carbonatites from Tanzania, East Africa. Geophys J Int 103:103–109.

    Article  Google Scholar 

  • Skinner BJ, Luce FD (1971) Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. Am Mineral 56:1269–1296.

    Google Scholar 

  • Tatsumoto M, Knight RJ, Allègre CJ (1973) Time difference in the formation of meteorites as determined from the ratio of lead-207 to lead-208. Science 180:1278–1283.

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 pp.

    Google Scholar 

  • Uhlig C (1907) Der sogennante grosse Ostafrikanische Graben zwischen Magad (Natron See) und Lawa ya Mueri (Manyara See). Geogr Zeit 15:478–505.

    Google Scholar 

  • Wakita H, Rey P, Schmitt RA (1971) Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples, five igneous and one breccia rock and four soils. Proc 2nd Lunar Sci Conf, Houston, Texas, pp 1319–1329.

    Google Scholar 

  • White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296:821–825.

    Article  Google Scholar 

  • Williams RW, Gill JB, Bruland KW (1986) Ra-Th disequilibria systematics: timescale of carbonatite magma formation at Oldoinyo Lengai volcano, Tanzania. Geochim Cosmochim Acta 50:1249–1259.

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571.

    Article  Google Scholar 

  • Zindler A, Jagoutz E, Goldstein S (1982) Nd, Sr and Pb isotope systematics in a three component mantle: a new perspective. Nature 298:519–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, J.B. et al. (1995). Petrology and Geochemistry of Oldoinyo Lengai Lavas Extruded in November 1988: Magma Source, Ascent and Crystallization. In: Bell, K., Keller, J. (eds) Carbonatite Volcanism. IAVCEI Proceedings in Volcanology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79182-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79182-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79184-0

  • Online ISBN: 978-3-642-79182-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics