Skip to main content

High Productivity of Certain Agronomic CAM Species

  • Chapter
Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

Plant productivity varies with the vegetation type and the environmental conditions. For native species in deserts, the aboveground dry-weight productivity averages only 1 Mg hectare−1 year−1 (Lieth and Whittaker 1975), whereas annual crops usually have productivities of 6 to 20 Mg ha−1 yr−1 (Evans 1975; Loomis and Gerakis 1975; Beadle et al. 1985; Nobel 1991)1. About 92% of all vascular plant species use the C3 photosynthetic pathway (Fig. 16. la) in which the first stable product of photosynthesis is a 3-carbon compound (3-phospho- glyceric acid; Ting 1985; Winter 1985; Lüttge 1987; Nobel 1991; Salisbury and Ross 1991). The highest productivities for C3 crops range from 34 to 45 Mg ha−1 yr−1 (Table 16.1). For plants with the C4 pathway (Fig. 16.1b), the first products formed are C4 acids (e. g. oxaloacetic acid and malic acid). The highest productivities are 47 to 88 Mg ha−1 yr−1 for C4 crops and 51 to 94 Mg ha−1 yr−1 for C4 floodplain grasses (Table 16.1). Although the values for floodplain grasses are initial estimates, the high values for sugarcane (Saccharum officinarum) have been confirmed by multiple studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batholomew DP, Kadzimin SB (1977) Pineapple. In: Alvim P de T, Kozlowski TT (eds) Ecophysiology of tropical crops. Academic Press, New York, pp 113–156

    Google Scholar 

  • Beadle CL, Long SP, Imbamba SK, Hall DO, Olembo RJ (1985) Photosynthesis in relation to plant production in terrestrial environments. Tycooly, Oxford

    Google Scholar 

  • Cockburn W (1985) Tansley review no. 1. Variation in photosynthetic acid metabolism in vascular plants: CAM and related phenomena. New Phytol 101: 3–24

    Article  CAS  Google Scholar 

  • Cooper’ JP (ed) (1975) Control of photosynthetic production in terrestrial systems. Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 593–621

    Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Evans LT (ed) (1975) Crop physiology: some case histories. Cambridge University Press, Cambridge

    Google Scholar 

  • Flores Valdez CA, Aguirre Rivera JR (1979) El nopal como forraje. Universidad Autónoma Chapingo, Chapingo, México

    Google Scholar 

  • Garcia de Cortâzar V, Nobel PS (1986) Modeling of PAR interception and productivity of a prickly pear cactus, Opuntia ficus-indica, at various spacings. Agron J 78: 80–85

    Article  Google Scholar 

  • Garcia de Cortázar V, Nobel PS (1991) Prediction and measurement of high annual productivity for Opuntia ficus-indica. Agric For Meteorol 56: 261–272

    Article  Google Scholar 

  • Garcia de Cortázar V, Nobel PS (1992) Biomass and fruit production for the prickly pear cactus, Opuntia ficus-indica. J Am Soc Hortic Sci 117: 558–562

    Google Scholar 

  • Garcia de Cortázar V, Acevedo E, Nobel PS (1985) Modeling of PAR interception and productivity by Opuntia ficus-indica. Agric For Meteorol 34: 145–182

    Article  Google Scholar 

  • Garcia-Moya E, Nobel PS (1990) Leaf unfolding rates and responses to cuticle damaging for pulque agaves in Mexico. Desert Plants 10: 55–57

    Google Scholar 

  • Gibbon AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Gregory RPF (1989) Biochemistry of photosynthesis, 3rd edn. John Wiley, Chichester

    Google Scholar 

  • Griffiths D (1915) Yields of native prickly pear in southern Texas. Bulletin 208, United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Jarvis JG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology IV, Encyclopedia of plant physiology, new series, vol 12D. Springer, Berlin Heidelberg New York, pp 233–280

    Chapter  Google Scholar 

  • Jones MB (1986) Wetlands. In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments. Elsevier, Amsterdam, pp 103–138

    Google Scholar 

  • Kira T (1975) Primary production of forests. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 5–40

    Google Scholar 

  • Lieth H, Whittaker RH (eds) (1975) Primary productivity in the biosphere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Loomis RS (1983) Productivity of agricultural systems. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology IV. Encyclopedia of plant physiology, new series, vol 12D. Springer, Berlin Heidelberg New York, pp 151–172

    Chapter  Google Scholar 

  • Loomis RS, Gerakis PA (1975) Productivity of agricultural ecosystems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 145–172

    Google Scholar 

  • Lüttge U (1987) Tansley review no. 10. Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629

    Article  Google Scholar 

  • Monjauze A, Le Houérou HN (1965) Le rôle des Opuntia dans l’économie agricole Nord Africaine. Bull Ec Natl Super Tunisi 8–9: 85–164

    Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond Ser B 281: 277–294

    Article  Google Scholar 

  • Nobel PS (1984) Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia 64: 1–7

    Article  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobel PS (1989) A nutrient index quantifying productivity of agaves and cacti. J Arid Environ 26: 635–645

    Google Scholar 

  • Nobel PS (1991) Tansley review no. 32. Achievable productivities of CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119: 183–205

    Article  CAS  Google Scholar 

  • Nobel PS, Hartsock TL (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a crassulacean acid metabolism plant, Opuntia ficus-indica. Plant Physiol 71: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS, Hartsock TL (1984) Physiological responses of Opuntia ficus-indica to growth temperature. Physiol Plant 60: 98–105

    Article  Google Scholar 

  • Nobel PS, Valenzuela AC (1987) Environmental responses and productivity of the CAM plant, Agave tequilana. Agric For Meteorol 39: 319–334

    Article  Google Scholar 

  • Nobel PS, Garcia-Moya E, Quero E (1992) High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ 15: 329–335

    Article  Google Scholar 

  • Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72: 1456–1463

    Article  Google Scholar 

  • Russell CE, Felker P (1987) The prickly-pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Econ Bot 41: 433–445

    Article  Google Scholar 

  • Salisbury FB, Ross CW (1991) Plant physiology, 4th edn. Wadsworth, Belmont

    Google Scholar 

  • Schönau APG, Pennefather M (1975) A first account of profits at harvesting as a result of fertilizing Eucalyptus grandis at time of planting in southern Africa. S Afr For J 94: 29–35

    Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings, Redwood City

    Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622

    Article  CAS  Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nobel, P.S. (1996). High Productivity of Certain Agronomic CAM Species. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics