Skip to main content

Productivity of Agricultural Systems

  • Chapter
Physiological Plant Ecology IV

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / D))

Abstract

Agriculture, one of the most ancient and diverse pursuits of man, currently touches about 30% of the ice-free land area of our globe: 1.4 × 109 ha of arable land is given to cultivated crops, while another 3.0 × 109 ha is exposed to grazing by domestic animals. Our focus here will be on the arable lands and their crops and forages, beginning with an overview of agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberda T, Sibma L (1968) Dry matter production and light interception of crop surfaces. III. Actual herbage production in different years as compared with potential values. J Br Grassl Soc 23:206–215

    Article  Google Scholar 

  • Boysen-Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, Jena

    Google Scholar 

  • Brougham RW (1956) Effect of intensity of defoliation on regrowth of pasture. Aust J Agric Sci 7:377–387

    Article  Google Scholar 

  • Clark EA, Loomis RS (1978) Dynamic aspects of leaf growth and development in sugarbeets. J Am Soc Sugar Beet Technol 20:97–113

    Article  Google Scholar 

  • Clark HE (1978) Cereal-based diets to meet protein requirements of adult man. World Rev Nutr Diet 32:27–48

    PubMed  CAS  Google Scholar 

  • Cock JH, Wholey D, Gutierrez de la Casas O (1977) Effects of spacing on cassava (Manihot esculenta). Exp Agric 13:289–299

    Google Scholar 

  • Cooper JP (1975) Control of photosynthetic production in terrestrial systems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Corley RHV (1973) Effects of plant density on growth and yield of oil palm. Exp Agric 9:169–180

    Article  Google Scholar 

  • Cours G (1951) Le manioc a Madagascar. Mem Inst Sci Madagascar Ser B3:203–400

    Google Scholar 

  • Dalrymple DG (1971) Survey of multiple cropping in less developed nations. US Dep Agric Bull FEDR-12, Washington, DC

    Google Scholar 

  • Duncan WG (1971) Leaf angles, leaf-area, and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  • Duncan WG, Loomis RS, Williams WA, Hanau R (1967) A model for simulating photosynthesis in plant communities. Hilgardia 38:181–205

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    Article  PubMed  CAS  Google Scholar 

  • Evans LT (1975) The physiological basis of crop yield. In: Evans LT (ed) Crop physiology — some case histories. Cambridge Univ Press, Cambridge

    Google Scholar 

  • FAO (1979) Production yearbook. Food Agric Org UN, Rome

    Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Annu Rev Plant Physiol 29:277–317

    Article  CAS  Google Scholar 

  • Garner HV, Dyke GV (1969) 3. The Broadbalk yields. Part 2, Rothamsted Exp Sta Rep 1968

    Google Scholar 

  • Hall AD (1929) Agriculture. Encycl Br (14th edn) 1:391–397

    Google Scholar 

  • Hall AE, Connell GH, Lawton HW (eds) (1979) Agriculture in semiarid environments. Ecol Stud Vol 34. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Holmes EB, Wilson LA (1977) Total dry matter production, tuber yield, and yield components of six local cassava cultivars in Trinidad. In: Cock J, Maclntyre R, Graham M (eds) Proc 4th Symp Int Soc Trop Root Crops. Int Dev Res Cen, Ottawa

    Google Scholar 

  • Jenkinson DS (1971) The accumulation of organic matter in soil left uncultivated. Rothamsted Exp Stn Rep 1970

    Google Scholar 

  • Jenny H (1930) A study on the influence of climate upon nitrogen and organic matter content of the soil. Univ Missouri Agric Exp Stn Bull 152

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Lemeur R, Blad BL (1974) A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agric Meteorol 14:255–286

    Article  Google Scholar 

  • Loomis RS, Gerakis PA (1975) Productivity of agricultural ecosystems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. IBP3. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72

    Article  Google Scholar 

  • Loomis RS, Williams WA (1967) Productivity and the morphology of crop stands: patterns with leaves. In: Eastin JD, Haskins FA, Sullivan CY, Bavel van CHM (eds) Physiological aspects of crop yield. Am Soc. Agron, Madison

    Google Scholar 

  • Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Article  Google Scholar 

  • McDermitt DK, Loomis RS (1981) Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Ann Bot 48:275–290

    CAS  Google Scholar 

  • McNeal FH, Berg MA, Watson CA (1966) Nitrogen and dry matter in five spring wheat varieties at successive stages of development. Agron J 58:605–608

    Article  CAS  Google Scholar 

  • Monteith JL (1978) Reassessment of maximum growth rates for C3 and C4 crops. Exp Agric 14:1–5

    Article  CAS  Google Scholar 

  • Murata Y (ed) (1975) Crop productivity and solar energy utilization in various climates in Japan. JIBP Synthesis, vol XL Univ Tokyo Press, Tokyo

    Google Scholar 

  • NAS (1969) United States- Canadian tables of feed composition. Natl Acad Sci, Washington DC

    Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, Laar van HH (1974) Products, requirements and efficiency of biosynthesis; a quantitative approach. J Theor Biol 45:339–377

    Article  PubMed  CAS  Google Scholar 

  • Robinson RA (1976) The pathosystem concept. Plant pathosystems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. TVS 3. Junk, The Hague

    Google Scholar 

  • Shibles RM, Weber CR (1966) Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci 6:55–59

    Article  Google Scholar 

  • Sibma L (1968) Growth of closed green crop surfaces in the Netherlands. Crop Sci 11:482–485

    Google Scholar 

  • Sinclair TR, Wit de CT (1976) Analysis of the carbon and nitrogen limitations to soybean yield. Agron J 68:319–324

    Article  CAS  Google Scholar 

  • Slicher van Bath BH (1963) The agrarian history of Western Europe, AD 500–1850. Olive Ordish (transi) Arnold, London

    Google Scholar 

  • Spiertz JHJ, Ellen J (1978) Effects of nitrogen on crop development and grain growth of winter wheat in relation to assimilation and utilization of assimilates and nutrients. Neth J Agric Sci 25:210–231

    Google Scholar 

  • Stanhill G (1976) Trends and deviations in the yield of the English wheat crop during the last 750 years. Agro-Ecosystems 3:1–10

    Article  Google Scholar 

  • Stauffer RS, Muckenhirn RJ, Odell RT (1940) Organic carbon, pH, and aggregation of the soil of the Morrow plats as affected by type of cropping and manurial addition. J Am Soc Agron 32:819–832

    Article  CAS  Google Scholar 

  • Thünen von JH (1826) Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Perthes, Hamburg

    Google Scholar 

  • Trenbath TR, Angus JF (1975) Leaf inclination and crop production. Field Crop Abstr 28:231–244

    Google Scholar 

  • Welbank PJ, Gibb MJ, Taylor PJ, Williams ED (1974) Root growth of cereal crops. Part 2, Rothamsted Exp Stra Rep 1973

    Google Scholar 

  • Welch LF (1976) The Morrow plots — hundred years of research. Ann Agron 26:881–890

    Google Scholar 

  • Whittaker RH, Likens GE (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Ecol Stud Vol 14. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Willey RW (1979) Intercropping — its importance and research needs. Field Crop Abstr 32:1–10 (part 1) 73–85 (part 2)

    Google Scholar 

  • Williams WA, Loomis RS, Lepley CR (1965) Vegetative growth of corn as affected by population density. I. Productivity in relation to interception of solar radiation. Crop Sci 5:211–215

    Article  Google Scholar 

  • Williams WA, Loomis RS, Duncan WG, Dovrat A, Nunez AF (1968) Canopy architecture at various population densities and the growth and grain yield of corn. Crop Sci 8:303–308

    Article  Google Scholar 

  • Wit de CT (1958) Transpiration and crop yields. Versl Landbouwk Onderz 64.6

    Google Scholar 

  • Wit de CT, Heemst van HDJ (1976) Aspects of agricultural resources. In: Koetsier WT (ed) Proceedings of the plenary sessions of the first world congress on chemical engineering. Elsevier, Amsterdam

    Google Scholar 

  • Wit de CT, et al. (1978) Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs. PUDOC, Wageningen

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Loomis, R.S. (1983). Productivity of Agricultural Systems. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology IV. Encyclopedia of Plant Physiology, vol 12 / D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68156-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68156-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68158-5

  • Online ISBN: 978-3-642-68156-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics