Skip to main content

PCR Amplification of DNA from Root Nodules

  • Chapter
Nucleic Acids in the Environment

Part of the book series: Springer Lab Manuals ((SLM))

  • 515 Accesses

Abstract

Root nodule bacteria which nodulate legumes are commonly known as rhizobia. These bacteria are capable of specifically infecting legume root tissue, where a symbiosis develops between the bacterium and the plant host within a root nodule. Rhizobia fix atmospheric nitrogen to ammonia, which is subsequently utilized by the plant. In return, the plant supplies rhizobia with photosynthates as a source of carbon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjourson AJ, Cooper JE (1988) Isolation of Rhizobium loti strain specific DNA sequences by subtraction hybridization. Appl Environ Microbiol 54: 2852–2855

    Google Scholar 

  • Bjourson AJ, Stone CE, Cooper JE (1992) Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain specific Rhizobium DNA sequences. Appl Environ Microbiol 58: 2296–2301

    Google Scholar 

  • Bohlool BB, Schmidt EL (1980) The immunofluorescence approach in microbial ecology. Microbiol Ecol 4: 203–241

    Google Scholar 

  • Bousquet J, Simon L, Lalonde M (1990) DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can J Forestry 20: 254–257

    Article  Google Scholar 

  • Brockman FJ, Bezdicek DF (1989) Diversity within serogroups of Rhizobium leguminosarum biovar viciae in the Palouse region of eastern Washington as indicated by plasmid profiles, intrinsic antibiotic resistance and topography. Appl Environ Microbiol 55: 109–115

    Google Scholar 

  • Brown G, Khan Z, Lifshitz R (1990) Plant growth promoting rhizobacteria: strain identification by restriction fragment length polymorphisms. Can J Microbiol 36: 242–248

    Article  Google Scholar 

  • Cooper JE, Bjourson AJ, Thompson JK (1987) Identification of Lotus rhizobia by direct DNA hybridization of crushed root nodules. Appl Environ Microbiol 53: 1705–1707

    Google Scholar 

  • de Bruijn FJ (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58: 2180–2187

    Google Scholar 

  • Djordjevic MA, Zurkowski W, Shine J, Rolfe BR (1983) Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, R. leguminosarum and R. meliloti. JBacteriol 156: 1035–1045

    Google Scholar 

  • Flores M, Gonzalez V, Brom S, Martinez E, Pinero D, Romero D, Davila G, Palacios R (1987) Reiterated DNA sequences in Rhizobium and Agrobacterium. JBacteriol 167:5782–5788

    Google Scholar 

  • Hodgson ALM, Roberts WP (1983) DNA colony hybridization to identify Rhizobium strains. J Gen Microbiol 129: 207–212

    Google Scholar 

  • Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ (1993) Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 59: 1702–1708

    Google Scholar 

  • Kaijalainen S, Lindström K (1989) Restriction fragment length polymorphism analysis of Rhizobium galegae strains. JBacteriol 171: 5561–5566

    Google Scholar 

  • Kaluza K, Hahn M, Hennecke H (1985) Repeated sequences similar to insertion elements clustered around the nif region of the Rhizobium japonicum genome. J Bacteriol 162: 535–542

    Google Scholar 

  • Lindströn K, Lehtomki S (1988) Metabolic properties, maximum growth temperature and phage typing as means of distinguishing Rhizobium sp. ( Galega) from other fast-growing rhizobia. FEMS Microbiol Lett 50: 277–287

    Google Scholar 

  • Lipsanen P, Lindstrftm K (1989) Lipopolysaccharide and protein profiles of Rhizobium sp. ( Galega) strains. FEMS Microbiol Lett 58: 323–328

    Google Scholar 

  • Martinez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9: 59–93

    Article  Google Scholar 

  • Miller MS, Pepper IL (1988) Survival of a fast growing strain of lupine rhizobia in Sonoran desert soil. Soil Biol Biochem 20: 323–327

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8: 4321–4325

    Article  Google Scholar 

  • Pepper IL, Josephson KL, Nautiyal C, Bourque DP (1989) Strain identification of highly competitive bean rhizobia isolated from root nodules: use of fluorescent antibodies, plasmid profiles and gene probes. Soil Biol Biochem 21: 749–753

    Article  Google Scholar 

  • Pillai SD, Josephson KL, Way J, Gerba CP, Pepper IL (1991) A rapid method for processing soil samples for PCR amplifications of specific gene sequences. Appl Environ Microbiol 57: 2283–2286

    Google Scholar 

  • Pillai SD, Josephson KJ, Bailey RL, Pepper EL (1992) Specific detection of rhizobia in root nodules and soil using the polymerase chain reaction. Soil Biol Biochem 24: 885–891

    Article  Google Scholar 

  • Quinto C, de la Vega H, Flores M, Fernandez L, Ballardo T, Soberon G, Palacios R (1982) Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299: 724–726

    Google Scholar 

  • Renwick A, Gareth Jones D (1985) A comparison of the fluorescent ELISA and antibiotic resistance identification techniques for use in ecological experiments. J Appl Bacteriol 58: 199–206

    Article  Google Scholar 

  • Ruano G, Kidd KK (1990) Booster PCR: a biphasic paradigm for amplification of a few molecules of target. Amplification Forum PCR Users 3: 12–13

    Google Scholar 

  • Saano A, Lindstrom K (1992) Detection of rhizobia by DNA-DNA hybridization from soil samples: problems and perspectives. Symbiosis 8: 61–73

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–494

    Article  Google Scholar 

  • Shishido M, Pepper EL (1990) Identification of dominant indigenous Rhizobium meliloti by plasmid profiles and intrinsic antibiotic resistance. Soil Biol Biochem 22: 11–16

    Article  Google Scholar 

  • Shoushtari NH, Pepper IL (1985) Mesquite rhizobia isolated from the Sonoran desert II. Competitiveness and survival in desert soils. Soil Biol Biochem 17: 803–806

    Google Scholar 

  • Simonet P, Haurat J, Normand P, Bardin R, Moiroud A (1986) Localization of nif genes on a large plasmid in Frankia sp strain ULQO132105009. Mol Gen Genet 204: 492–495

    Article  Google Scholar 

  • Simonet P, Normand P, Moiroud A, Bardin R (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucelotide probes. Arch Microbiol 153: 235–240

    Article  Google Scholar 

  • Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54: 2185–2191

    Google Scholar 

  • Turco RF, Moorman TB, Bezdicek DF (1986) Effectiveness and competitiveness of spontaneous antibiotic-resistant mutants of Rhizobium leguminosarum and Rhizobinm japonicum. Soil Biol Biochem 18: 259–262

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pepper, I.L., Pillai, S.D. (1995). PCR Amplification of DNA from Root Nodules. In: Trevors, J.T., van Elsas, J.D. (eds) Nucleic Acids in the Environment. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79050-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79050-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58069-0

  • Online ISBN: 978-3-642-79050-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics