Skip to main content

PCR Amplification of DNA Recovered from the Aquatic Environment

  • Chapter
Nucleic Acids in the Environment

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

Polymerase chain reaction (PCR; Atlas and Bej 1993; Mullis and Faloona 1987; Mullis 1990; Saiki et al. 1988; Steffan and Atlas 1988) amplification of nucleic acids from aquatic environments is an important tool to study the taxonomy, species diversity, distribution, occurrence, community structure, and seasonal variation of microorganisms. It is highly specific and analysis is rapid. In addition, water bodies including potable waters contaminated with microbial pathogens (including viruses and protozoans) are involved in the transmission of infectious diseases. Water supplies also serve as a reservoir for pathogens such as Legionella pneumophila, which causes Legionnaires’ disease when disseminated from air-conditioning cooling towers, humidifiers, hot tubs, whirlpools, and swimming pools. Routine monitoring of these pathogens by conventional culturing methods indicates the requirement for disinfection measurements if the level of detectable pathogen demonstrates the probability of a disease outbreak. The United States Environmental Protection Agency (U.S. EPA) mandates monitoring of pathogens such as Salmonella, Shigella, and Giardia and indicator organisms (coliform bacteria and Escherichia coli) in drinking water and water supplies as a measure of safety of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbaszadegan M, Huber MS, Gerba CP, Pepper IL (1993) Detection of enteroviruses in groundwater with the polymerase chain reaction. Appl Environ Microbiol 59: 1318–1324

    Google Scholar 

  • Amann RI, Stromley J, Devereux R, Keryl R, Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58: 614–623

    Google Scholar 

  • Ansari SA, Farrah SR, Chaudhry GR (1992) Presence of human immunodeficiency virus nucleic acids in wastewater and their detection by polymerase chain reaction. Appl Environ Microbiol 58: 3984–3990

    Google Scholar 

  • Atlas RM, Bej AK (1990) Detecting bacterial pathogens in environmental water samples by using PCR and gene probes. In: Innis M, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications. Academic, New York, pp 399–406

    Google Scholar 

  • Atlas RM, Bej AK (1993) Polymerase chain reaction. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. Am Soc Microbiol Washington, pp 418–435

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Sideman JG, Struhl K (1987) Current protocols in molecular biology, Wiley, New York

    Google Scholar 

  • Beasley L, Jones DD, Bej AK (1994) A rapid method for detection and differentiation of KP+ and KP Vibrio parahemolyticus in artificially contaminated shellfish by in vitro DNA amplification and gene probe hybridization methods. 94th General Meeting of American Society for Microbiology (ASM), Las Vegas, Nevada

    Google Scholar 

  • Bej AK, Steffen RJ, DiCesare JL, Haff L, Atlas RM (1990a) Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl Environ Microbiol 56: 307–314

    Google Scholar 

  • Bej AK, Mahbubani MH, Miller R, DiCesare JL, Haff L, Atlas RM (1990b) Multiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes 4: 353–365

    Article  Google Scholar 

  • Bej AK, Mahbubani MH, DiCesare JL, Atlas RM (1991a) PCR-gene probe detection of microorganisms using filter-concentrated samples. Appl Environ Microbiol 57: 3529–3534

    Google Scholar 

  • Bej AK, DiCecare JL, Haff L, Atlas RM (1991b) Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl Environ Microbiol 57: 1013–1017

    Google Scholar 

  • Bej AK, MeCarty SC, Atlas RM (1991c) Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Appl Environ Microbiol 57: 2429–2432

    Google Scholar 

  • Bej AK, Mahbubani MH, Atlas RM (199 Id) Amplification of nucleic acids by polymerase chain reaction (PCR) and other methods and their applications. Crit Rev Biochem Mol Biol 26(3/4):301–334

    Google Scholar 

  • Bej AK, Atlas RM (1991e) Bacterial detection using PCR and colorimetric gene probe methods, 91st General Meeting of the Am Soc Microbiol Abstract Q-144, p 300

    Google Scholar 

  • Bej AK, Mahbubani MH, Atlas RM (199If) Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl Environ Microbiol 57: 597–600

    Google Scholar 

  • Bej AK, Mahbubani MH (1992) Applications of the polymerase chain reaction in environmental microbiology. PCR Method Appl 1: 151–159

    Google Scholar 

  • Bej AK, Mahbubani MH, Atlas RM (1993) Detection and molecular serogrouping of Legionella pneumophila by polymerase chain reaction amplification and restriction enzyme analysis. In: Barbaree JM, Breiman RF, Dufor AP (eds) Legionella: current status and emerging perspective. Am Soc Microbiol; Washington, pp 173–174

    Google Scholar 

  • Bej AK, Mahbubani MH, Boyce M, Atlas RM (1994) Detection of Salmonella spp. in artificially contaminated oysters by PCR DNA amplification. Appl Environ Microbiol 60: 368–373

    Google Scholar 

  • Bej AK, Mahbubani MH (1994) Thermostable DNA polymerase for in vitro DNA amplifications. In: Griffin A, Griffin H (eds) PCR technology: current innovations. CRC Press, Boca Raton, pp 219–237

    Google Scholar 

  • Brauns LA, Hudson MC, Oliver JD (1991) Use of the polymerase chain reaction in detection of culturable and noneulturable Vibrio vulnificus cells. Appl Environ Microbiol 57: 2651–2655

    Google Scholar 

  • Burggraf S, Mayer T, Amann R, Schadhauser S, Woese CR, Stetter KO (1994) Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 60: 3112–3119

    Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1992) Primer-template interaction during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol Gen Genet 235: 157–161

    Google Scholar 

  • Caetano-Anolles G (1993) Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl 3: 85–93

    Google Scholar 

  • Cancilla MR, Powill IB, Hillier AJ, Davidson BE (1992) Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol 58: 1772–1775

    Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Radolf JH (1988) Deletion screening of 3the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    Google Scholar 

  • Chapman NM, Tracy S, Gauntt CJ, Fortmueller U (1990) Molecular detection and identification of enteroviruses using enzymatic amplification and nucleic acid hybridization. J Cl in Microbiol 28:843–850

    Google Scholar 

  • Cleuziat P, Baudouy-Robert J (1991) Specific detection of Escherichia coli and Shigella species \using fragments of genes coding for beta-glucuronidase. FEMS Microbiol Lett 72: 315–322

    Google Scholar 

  • Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but nonculturable Vibrio cholerae and related pathogens in the environment: implication for the release of genetically engineered microorganisms. Bio/Technol 3: 817–820 )

    Article  Google Scholar 

  • Cook KL, Mahbubani MH, Bej AK, Gauthier JJ (1994) Methods for template DNA suitable for polymerase chain reaction (PCR) amplification technique: A journal of methods in cell and molecular biology: (in press)

    Google Scholar 

  • Craun GF (1988) Surface water supplies and health. J Am Water Works Assoc 80: 40–52

    Google Scholar 

  • De Flaun MF, Paul JH, Davis D (1986) Simplified method for dissolved DNA determination in aquatic environments. Appl Environ Microbiol 52: 654–659

    Google Scholar 

  • De Lamballerie X, Zandotti C, Vignoli C, Bollet C, De Micco P (1992) A one-step microbial DNA extraction method using “Chelex 100” suitable for gene amplification. Res Microbiol 143: 785–790

    Article  Google Scholar 

  • De Leon, R, Shieh, C, Baric, RS, Sobsey MD (1990) Detection of enteroviruses and hepatitis A virus in environmental samples by gene probes and polymerase chain reaction. Proceedings of the 1990 Water Quality Technology Conference, American Water Works Association, Denver, CO, pp 833–853

    Google Scholar 

  • Deng MY, Day SP, Cliver DO (1994) Detection of hepatitis A virus in environmental samples by antigen-capture PCR. Appl Environ Microbiol 60: 1927–1933

    Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252: 1643–1651

    Article  Google Scholar 

  • Fuhrman JA, Comeau DE, Hagstrom A, Cham AM (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54: 1426–1429

    Google Scholar 

  • Furrer B, Candrian U, Wieland P, Luthy J (1990) Improving PCR efficiency. Nature 3246: 324

    Article  Google Scholar 

  • Girgis SI, Alevizaki M, Denny P, Ferrier GJM, Legon S (1988) Generation of DNA probes for peptides with highly degenerate codons using mixed primer PCR. Nucleic Acids Res 16: 10371

    Article  Google Scholar 

  • Gomez-Lus P, Fields BS, Benson RF, Martin WT, O’Conner SP, Black CM (1993) Comparison

    Google Scholar 

  • of arbitrarily primed polymerase chain reactions, ribotyping, and monoclonal antibody analysis for subtyping Legionella pneumophila serogroup 1. J. Clin Microbiol 31:1940–1942

    Google Scholar 

  • Graves S, Bej AK (1994) Use of polymerase chain reaction (PCR) in distinguishing live Salmonella typhimurium from biocide-treated dead cells in water. 94th Gen Meet American Society for Microbiology (ASM), Las Vegas, Nevada

    Google Scholar 

  • Hennessy KJ, Iandolo JJ, Fen wick BW (1993) Serotype identification of Actinobacillus pleuropnenmoniae by arbitrarily primed polymerase chain reaction. J Clin Microbiol 31: 1155–1159

    Google Scholar 

  • Hussong D, Colwell RR, O’Brien MO, Weiss E, Pearson AD, Eiener RM, BĂĽrge WD (1987) Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technol 5:947–950

    Google Scholar 

  • Innis M, Gelfand D, Sninsky D, White D (1990) PCR protocols: a guide to methods and applications. Academic, New York

    Google Scholar 

  • Isaacs ST, Tessman JW, Metchette KC, Hearst JE, Cimino GD (1991) Post-PCR sterilization: development and application to an HIV-1 diagnostic assay. Nucleic Acids Res 19: 109–116

    Article  Google Scholar 

  • Jackson MP (1991) Detection of Shiga toxin-producing Shigella dysenteriae type 1 and Escherichia coli by using polymerase chain reaction with incorporation of digoxigenin-11-dUTP. J Clin Microbiol 29: 1910–1914

    Google Scholar 

  • Jeffrey WH, Nazaret S, von-Haren R (1994) Improved method for recovery of mRNA from aquatic samples and its applications to detection of mer expression. Appl Environ Microbiol 60: 1814–1821

    Google Scholar 

  • Jinno Y, Yoshiiura K, Niikawa N (1990) Use of psoralen as extinguisher of contaminated DNA in PCR. Nucleic Acids Res 18: 6739

    Article  Google Scholar 

  • Jones DD, Law R, Bej AK (1993) Detection of Salmonella spp. in contaminated oysters using polymerase chain reaction and gene probes. J Food Sei. 58: 525–536.

    Article  Google Scholar 

  • Josephson KL, Gerba CP, Pepper IL (1993) Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59: 3513–3315

    Google Scholar 

  • Keller GH, Huang DP, Shih WK, Manak M (1990) Detection of hepatitis B virus DNA in serum by polymerase chain reaction amplification and microtiter sandwich hybridization. 28: 1411–1416

    Google Scholar 

  • Koide M, Saito A, Kusano N, Higa F (1993) Detection of Legionella spp. in cooling tower water by polymerase chain reaction method. Appl Environ Microbiol 9: 1943–1946

    Google Scholar 

  • Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339: 237–238

    Article  Google Scholar 

  • Kwok K, McClelland M (1994) Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed polymerase chain reaction of RNA. ProcNatl Acad Sei USA 91: 639–643

    Article  Google Scholar 

  • Lee S, Fuhrman JA (1990) DNA hybridization to compare species compositions of natural bacterioplankton assemblages. Appl Environ Microbiol 56: 739–746

    Google Scholar 

  • Li H, Gyllensten UB, Cui X, Saiki RK, Erlich HA, Arnheim N (1988) Amplification analysis of sequences in single sperm and diploid cells. Nature 335: 414–417

    Article  Google Scholar 

  • Longo MC, Beminger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reaction. Gene 93: 125–128

    Article  Google Scholar 

  • Loutit JS, Tompkins LS (1993) Evaluation of a DNA amplification procedure for detection of Legionella pneumophila and Legionella dumoffii in water. In: Barbaree JM, Breiman RF, Du for AP (eds) Legionella: current status and emerging perspective. Am Soc Microbiol Washington, pp 176–178

    Google Scholar 

  • Louws FJ, Fulbright DW, Stephens CT, Bruijn FJ (1994) Specific genomic fingerprints of pathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60: 2286–2295

    Google Scholar 

  • Mahbubani MH, Bej AK, Perlin M, Schaeffer FWHI, Jakubowski W, Atlas RM (1991a) Detection of Giardia cysts by using the polymerase chain reaction and distinguishing live from dead cysts. Appl Environ Microbiol 57: 3456–3461

    Google Scholar 

  • Mahbubani M, Bej A, DiCesare J, Miller R, Haff L, Atlas RM (1991b) Detection of bacterial mRNA using PCR. BioTechniques 10: 48–49

    Google Scholar 

  • Mahbubani MH, Bej AK, Perlin MH, Schaefer FWID, Jakubowski W, Atlas RM (1992) Differentiation of Giardia duodenalis from other Giardia spp. by using polymerase chain reaction and gene probe methods. J Clin Microbiol 30: 74–78

    Google Scholar 

  • Mahbubani MH, Schaefer FW, Bej AK(1994) Detection of Giardia duodenalis in environmental waters by polymerase chain reaction and immunomagnetic separation Appl Environ Microbiol (submitted)

    Google Scholar 

  • Mahbubani MH, Jones DD, Bej AK (1994) Species-specific detection of Shigella spp. By polymerase chain reaction. J Appl Bacteriol (submitted)

    Google Scholar 

  • Manulis KS, Valinsky L, Lichter A, Gabriel, DW (1994) Sensitive and specific detection of Xanthomonas campestris pv. pelargonii with DNA primers and probes identified by random amplified polymorphic DNA analysis. Appl Environ Microbiol 60: 4094–4099

    Google Scholar 

  • McCarty SC, Atlas RM (1993) Effect of amplicon size on polymerase chain reaction detection of bacteria exposed to chlorine (in press)

    Google Scholar 

  • McMillin DE, Muldrow LL (1992) Typing of toxic strains of Clostridium difficile using DNA fingerprints generated with arbitrary polymerase chain reaction primers. FEMS Microbiol Lett 92: 5–10

    Article  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–351

    Article  Google Scholar 

  • Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sei Am 262: 56–65

    Google Scholar 

  • Nowicki M, Bornstein O, Jaulhae B, Piemont Y, Monteil H, Fleurette J (1993) Rapid detection of Legionellae in clinical and environmental samples by polymerase chain reaction. In: Barbaree JM, Breiman RF, Dufor AP (eds) Legionella: current status and emerging perspective, Am Soc Microbiol, Washington, pp 178–181

    Google Scholar 

  • Nuovo GJ, MaeConnell P, Gallery F (1994) Analysis of non-specific DNA synthesis during in situ PCR and solution-phase PCR. PCR Methods Appl 4: 89–96

    Google Scholar 

  • Orrego C (1990) Organizing a laboratory for PCR work. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ.(eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 447–454

    Google Scholar 

  • Oste C (1989) Optimization of magnesium concentration in the PCR reaction. Amplifications 1: 10

    Google Scholar 

  • Paul JH, Cazares L, Thurmomd J (1990) Amplification of the rbcL gene from dissolved and particulate DNA from acquatic environments. Appl Environ Microbiol 56: 1963–1966

    Google Scholar 

  • Paszko-Kolva C, Yamamoto H, Shahamat M, Colwell RR (1993) Polymerase chain reaction, gene probe, and direct fluorescent antibody staining of Legionella pneumophila serogroup 1 in drinking water and environmental samples. In: Barbaree JM, Breiman RF, Dufor AP (eds) Legionella: current status and emerging perspective, ASM,Washington, pp 181–183

    Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51: 365–379

    Google Scholar 

  • Running JA, Urdea MS (1990) A procedure for productive coupling of synthetic oligonucleotide to polystyrene microtiter wells for hybridization capture. Biotechniques 8: 276–277

    Article  Google Scholar 

  • Rychilk W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17: 8543–8551

    Article  Google Scholar 

  • Saiki R (1989) The design and optimization of the PCR. In Erlich HA (ed) PCR technology. Stockton Press, New York, pp. 7–16

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf, SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–494

    Article  Google Scholar 

  • Saiki RK, Walsh PS, Leverson CH, Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sei USA 86: 6230–6234

    Article  Google Scholar 

  • Sarkar G, Sommer SS (1990) More light on PCR contamination. Nature 347: 340–341

    Article  Google Scholar 

  • Schwab KJ, DeLeon R, Baric RS, Sobsey MD (1992) Detection of rotaviruses, enteroviruses, and hepatitis A virus by reverse transcriptase-polymerase chain reaction. In: Proceedings of the 1991 Water Quality Technology Conference, American Water Works Association, Denver, CO, pp 475–491

    Google Scholar 

  • Smith KT, Long CM, Bowman B, Manos MM (1990) Using cosolvents to enhance PCR amplification. Amplifications 5: 16

    Google Scholar 

  • Sommerville CC, Knight IT, Straub WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55: 548–554

    Google Scholar 

  • South worth J, Bej AK (1994) Species-specific identification of Escherichia coli by polymerase chain reaction (PCR) for monitoring drinking water quality. 94th Gen Meet American Society for Microbiology (ASM), Las Vegas, Nevada

    Google Scholar 

  • Stambach MN, Falkow S, Tompkins LS (1990) Species specific detection of Legionella pneumophila in water by DNA amplification and hybridization. J Clin Microbiol 2: 1257–1261

    Google Scholar 

  • Straub TM, Pepper EL, Abbaszadegan M, Gerba CP (1994) A method to detect enterovirus in sewage sludge-amended soil using the PCR. App Environ Microbiol 60: 1014–1017

    Google Scholar 

  • Steffan RJ, Atlas RM (1988) DNA amplification to enhance the detection of genetically engineered microorganisms in environmental samples. Appl Environ Microbiol. 54: 2185–2191

    Google Scholar 

  • Tsai YL, Tran B, Sangermano LR, Palmer CJ (1994) Detection of poliovirus, hepatitis A virus, and rotavirus from sewage and ocean water by triplex reverse transcriptase PCR. Appl Environ Microbiol 60: 2400–2407

    Google Scholar 

  • van Belkum, Struelens AM, Quint W (1993) Typing of Legionella pneumophila strains by polymerase chain reaction-mediated DNA fingerprinting. J Clinical Microbiol 31: 2198–2200

    Google Scholar 

  • Way JS, Josephson KL, Pillai SD, Abbaszadegan M, Gerba CP, Pepper IL (1993) Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol 59: 1473–1477

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Res 18: 7213–7218

    Article  Google Scholar 

  • Welsh J, McClelland M (1991) Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acid Res 19: 5275–5279

    Article  Google Scholar 

  • Winship PR (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulfoxide. Nucleic Acids Res 17: 1266

    Article  Google Scholar 

  • Zehr JP, McReynold LA (1989) Use of degenerate oligonucleotides for the amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55: 2522–2526

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bej, A.K. (1995). PCR Amplification of DNA Recovered from the Aquatic Environment. In: Trevors, J.T., van Elsas, J.D. (eds) Nucleic Acids in the Environment. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79050-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79050-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58069-0

  • Online ISBN: 978-3-642-79050-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics