Skip to main content

Role of Porin-Kinase Interactions in Disease

  • Conference paper
Molecular Biology of Mitochondrial Transport Systems

Part of the book series: NATO ASI Series ((ASIH,volume 83))

Abstract

Hexokinase (ATP: D-hexose 6-phosphotransferase, EC2.7.1.1) and glycerol kinase (ATP: glycerol phosphotransferase, EC2.7.1.30) catalyze the phosphorylation of their respective hexose and triose substrates in order to initiate mammalian metabolism of these compounds. The priority of these enzymes in metabolism alone would make them worthy subjects of investigation. For many of us, however, their interest also lies in their “social relations in the cell” as Kornberg (1989) so nicely stated. There is abundant evidence that hexokinase and glycerol kinase interact with porin, the voltage-dependent anion-selective channel (VDAC) of the outer mitochondrial membrane, in a developmental stage and tissue specific manner in the normal individual (McCabe 1983; Adams et al 1991a). There is also evidence that binding is altered in certain disease states. We will discuss the role of the porin-kinase interactions in a variety of diseases and the metabolic impact of these interactions, or, in some cases, their disruption.

Beyond the catalytic activities of these assemblies and the factors that fine-tune their operations, we need to be aware of their social relations in the cell — their attachments to other protein units, to membranes, and to the skeletal framework., A. Kornberg in For the Love of Enzymes (1989)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams V, Griffin L, Towbin J, Gelb B, Worley K, McCabe ERB (1991a) Porin interaction with hexokinase and glycerol kinase: Metabolic microcom-partmentation at the outer mitochondrial membrane. Biochem Med Metab Biol 45: 271–291

    Article  PubMed  CAS  Google Scholar 

  • Adams V, Griffin LD, Gelb BD, McCabe ERB (1991b) Protein kinase activity of rat brain hexokinase. Biochem Biophys Res Commun 177: 1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Adams V, Gray S, McCabe L, Yamashita Y, Le SP, McCabe ERB, Goddard-Finegold J (1992a) Effects of ischemia and reperfusion on mitochondrial bound hexokinase in piglet brain. In preparation.

    Google Scholar 

  • Adams V, Schieber A, McCabe ERB (1992b) Autophosphorylation of hexokinase: Evidence for a new “dual specificity” protein kinase. In preparation.

    Google Scholar 

  • Anderson CM, Zucker FH, Steitz TA (1979) Space-filling models of kinase clefts and conformation changes: comparison of the surface structures of kinase enzymes implicates closing clefts in their mechanism. Science 204: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Arora KK, Fanciulli M, Pedersen PL (1990) Glucose phosphorylation in tumor cells: Cloning, sequencing, and overexpression in active form of a full length cDNA encoding a mitochondrial bindable form of tumor hexokinase. J Biol Chem 265: 6481–6488

    PubMed  CAS  Google Scholar 

  • Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism — evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263: 17422–17428

    PubMed  CAS  Google Scholar 

  • Barinaga M (1990) Playing tetherball in the nervous system. Science 250: 506–507

    Article  PubMed  CAS  Google Scholar 

  • Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 19: 145–190

    Article  PubMed  CAS  Google Scholar 

  • Bessman S P (1954) A contribution to the mechanism of diabetes mellitus. In Najjar VA (ed) Fat Metabolism. Johns Hopkins Press Baltimore, pp 133–137

    Google Scholar 

  • Bessman SP (1966) A molecular basis for the mechanism of insulin action. Amer J Med 40: 740–749

    Article  PubMed  CAS  Google Scholar 

  • Bessman SP (1972) Hexokinase acceptor theory of insulin action, new evidence. Isr J Med Sci 8: 344–351

    PubMed  CAS  Google Scholar 

  • Blachly-Dyson E, Zambronicz E B, Yu W H, Adams V, McCabe ERB, Adelman J, Colombini M, Forte M (1992) Cloning, functional expression in yeast, and mapping of two human isoforms of the outer mitochondrial membrane channel, VDAC. In Proceedings of the Molecular Biology of Mitochondrial Transport Systems (This volume). Springer Verlag, Berlin

    Google Scholar 

  • Bonham JR, Crawford M (1990) The effect of isolated glycerol kinase (EC2.7.1.30) deficiency on glucose homeostasis — a cause for concern in affected patients. Abstracts Vth International Congress Inborn Errors of Metabolism OC8.5: (Abstract)

    Google Scholar 

  • Borrebaek B, Spydevold O (1969) The effects of insulin and glucose on mitochondrial-bound hexokinase activity of rat epididymal adipose tissue. Diabetologia 5: 42–43

    Article  PubMed  CAS  Google Scholar 

  • Bustamante E, Morris HP, Pedersen PL (1981) Energy metabolism of tumor cells: Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256: 8699–8704

    PubMed  CAS  Google Scholar 

  • Denis-Pouxviel C, Riesinger I, Buehler C, Brdiczka D, Murat JC (1987) Regulation of mitochondrial hexokinase in cultured HT 29 human cancer cells, an ultrastructural and biochemical study. Biochim Biophys Acta 902: 335–348

    Article  PubMed  CAS  Google Scholar 

  • Ekman P, Nilsson E (1988) Phosphorylation of glucokinase from rat liver in vitro by protein kinase A with a concomitant decrease of its activity. Arch Biochem Biophys 261: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Eriksson A, Lindstedt S, Ransnas L, von Wendt L (1983) Deficiency of glycerol kinase (EC2.7.1.30). Clin Chem 29: 718–722

    PubMed  CAS  Google Scholar 

  • Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, Lesage S, Vionnet N, Clément K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann JS, Lathrop GM, Pass P, Permutt MA, Cohen D (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356: 162–164

    Article  PubMed  CAS  Google Scholar 

  • Gauthier T, Denis-Pouxviel C, Murat JC (1989) Study on ATP-generating system and related hexokinase activity in mitochondria isolated from undifferentiated or differentiated HT29 adenocarcinoma cell. Biochim Biophys Acta 975: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Gauthier T, Denis-Pouxviel C, Murat JC (1990) Respiration of mitochondria isolated from differentiated and undifferentiated HT29 colon cancer cells in the presence of various substrates and ATP generating systems. Int J Biochem 22: 411–417

    Article  PubMed  CAS  Google Scholar 

  • Gelb BD, Adams V, Jones SN, Griffin LD, MacGregor GR, McCabe ERB (1992) Targeting of hexokinase 1 to liver and hepatoma mitochondria. Proc Natl Acad Sci USA 89: 202–206

    Article  PubMed  CAS  Google Scholar 

  • Ginns EI, Barranger JA, McClean SW, Schaefer E, Brady RO, Young R, Goodman SI, McCabe ERB (1984) Juvenile form of glycerol kinase deficiency with episodic vomiting, acidemia and stupor. J Pediatr 104: 736–739

    Article  PubMed  CAS  Google Scholar 

  • Golshani S (1992) Insulin, growth factors, and cancer cell energy metabolism: An hypothesis on oncogene action. Biochem Med Metab Biol 47: 108–115

    Article  PubMed  CAS  Google Scholar 

  • Gouchon X, Wilson JE (1990) Tetrameric structure of mitochondrially bound rat brain hexokinase: A crosslinking study. Arch Biochem Biophys 276: 285–293

    Article  Google Scholar 

  • Griffin LD, Gelb BD, Wheeler DA, Davison D, Adams V, McCabe ERB (1991) Mammalian hexokinase 1: Evolutionary conservation and structure to fonction analysis. Genomics 11: 1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, O’Rahilly S, Watkins PJ, Wainscoat JS (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet 339: 1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Herrero P, Fernandez R, Moreno F (1989) The hexokinase isozyme PII of Saccharomyces cerevisiae is a protein kinase. J Gen Microbiol 135: 1209–1216

    PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250: 533–538

    Article  PubMed  CAS  Google Scholar 

  • Howell RR, Grier R, Dominguez B, Draehn DK (1989) Neurological manifestations of juvenile glycerol kinase deficiency: Improvement with nutritional therapy. Brain Dysfonct 2: 126–130

    Google Scholar 

  • Jan LY, Jan YN (1989) Voltage-sensitive ion channels. Cell 56: 13–25

    Article  PubMed  CAS  Google Scholar 

  • Jurgens L, Ilsemann P, Kratzin HD, Hesse D, Eckart K, Thinnes FP, Hilschmann N (1991) Studies on human porin. IV. The primary structures of “porin 31HM” purified from human skeletal muscle membranes and of “porin 31HL” derived from human B lymphocyte membranes are identical. Biol Chem Hoppe-Seyler 372: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Katzen HM, Schimke RT (1965) Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and properties. Proc Natl Acad Sci USA 54: 1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Kayser H, Kratzin HD, Thinnes FP, Götz H, Schmidt WE, Eckart K, Hilschmann N (1989) Zur Kenntnis der Porine des Menschen. II. Charakterisierung und Primarstruktur eines 31-kDa-Porins aus menschlichen B-Lymphozyten (Porin 31 HL). Biol Chem Hoppe-Seyler 370: 1265–1278

    PubMed  CAS  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui L-C (1989) Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1989) For the Love of Enzymes, Harvard University Press Cambridge, MA

    Google Scholar 

  • Kottke M, Adams V, Riesinger I, Bremm G, Bosch W, Brdiczka D, Sandri G, Panfili E (1988) Mitochondrial boundary membrane contact sites in brain: Points of hexokinase and creatine kinase location, and control of Ca2+ transport. Biochim Biophys Acta 935: 87–102

    Article  PubMed  CAS  Google Scholar 

  • Lindberg RA, Quinn AM, Hunter T (1992) Dual-specificity protein kinases: Will any hydroxyl do? Trends Biochem Sci 17: 114–119

    Article  PubMed  CAS  Google Scholar 

  • Ludwig O, DePinto V, Palmieri F, Benz R (1986) Pore formation by the mitochondrial porin of rat brain in lipid bilayer membranes. Biochim Biophys Acta 860: 268–276

    Article  PubMed  CAS  Google Scholar 

  • Magnani M, Stocchi V, Dacha V, Fornaini G (1984a) Rabbit red blood cell hexokinase: Intracellular distribution during reticulocyte maturation. Mol Cell Biochem 63: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Magnani M, Stocchi V, Dacha V, Fornaini G (1984b) Rabbit red blood cell hexokinase: Evidences for an ATP-dependent decay during cell maturation. Mol Cell Biochem 61: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Magnani M, Stocchi V, Chiarantini L, Serafini G, Dacha V, Fornaini G (1986) Rabbit red blood cell hexokinase: Decay mechanism during reticulocyte maturation. J Biol Chem 261: 8327–8333

    PubMed  CAS  Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ (1988) Hexose metabolism in pancreatic islets: Regulation of mitochondrial hexokinase binding. Biochem Med Metab Biol 39: 80–89

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic ß-cells and hepatocytes. Diabetes 39: 647–652

    Article  PubMed  CAS  Google Scholar 

  • McCabe ERB (1983) Glycerol kinase deficiency: An inborn error of compartmental metabolism. Biochem Med 30: 215–230

    Article  PubMed  CAS  Google Scholar 

  • McCabe ERB (1989) Disorders of glycerol metabolism. In Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease. McGraw-Hill New York, pp 945–965

    Google Scholar 

  • McCabe ERB, Seltzer W K (1986) Glycerol kinase deficiency: Compartmental considerations regarding pathogenesis and clinical heterogeneity. In Brautbar N (ed) Myocardial and Skeletal Muscle Bioenergetics: Proceedings of 2nd International Congress on Myocardial and Cellular Bioenergetics and Compartmentation. Plenum Publishing Corp. New York, pp 481–494

    Google Scholar 

  • Nelson BD, Kabir F (1985) Adenylate kinase as a source of ATP for tumor mitochondrial hexokinase. Biochim Biophys Acta 841: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Nelson BD, Kabir F (1986) The role of the mitochondrial outer membrane in energy metabolism of tumor cells. Biochemie 68: 407–415

    Article  CAS  Google Scholar 

  • Nishi S, Seino S, Bell GI (1988) Human hexokinase: Sequences of amino-and carboxy-terminal halves are homologous. Biochem Biophys Res Commun 157: 937–943

    Article  PubMed  CAS  Google Scholar 

  • Parry DM, Pedersen PL (1983) Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. J Biol Chem 258: 10904–10912

    PubMed  CAS  Google Scholar 

  • Polakis PG, Wilson JE (1985) An intact N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria. Arch Biochem Biophys 236: 328–337

    Article  PubMed  CAS  Google Scholar 

  • Poulton KR, Nightingale S (1988) A new metabolic muscle disease due to abnormal hexokinase activity. J Neurol Neurosurg Psychiatry 51: 250–255

    Article  PubMed  CAS  Google Scholar 

  • Ralph RR, Darkin-Rattray S, Schofield P (1990) Growth-related protein kinases. BioEssays 12: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Schwab DA, Wilson JE (1989) Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc Natl Acad Sci USA 86: 2563–2567

    Article  PubMed  CAS  Google Scholar 

  • Schwab DA, Wilson JE (1991) Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from cloned cDNA. Arch Biochem Biophys 285: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Sener A, Malaisse-Lagae F, Giroix MH, Malaisse W (1986) Hexose metabolism in pancreatic islets: Compartmentation of hexokinase in islet cells. Arch Biochem Biophys 251: 61–67

    Article  PubMed  CAS  Google Scholar 

  • Stocchi V, Magnani M, Canestrari F, Dacha M, Fornaini G (1982) Multiple forms of human red blood cell hexokinase: Preparation, characterization, and age dependence. J Biol Chem 257: 2357–2364

    PubMed  CAS  Google Scholar 

  • Stocchi V, Magnani M, Piccoli G, Fornaini G (1988) Hexokinase microheterogeneity in rabbit blood cells and its behaviors during reticulocyte maturation. Mol Cell Biochem 79: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Thelen AP, Wilson JE (1991) Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from a cloned cDNA: Comparison with a hexokinase from Novikoff ascites tumor. Arch Biochim Biophys 286: 645–651

    Article  CAS  Google Scholar 

  • Thinnes FP, Götz H, Kayser H, Benz R, Schmidt WE, Kratzin HD, Hilschmann N (1989) Zur Kenntnis der Porine des Menschen. I. Reinigung eines Porins aus menschlichen B-Lymphozyten (Porin 31 HL) und sein topochemischer Nachweis auf dem Plasmalemm der Herkunftszelle. Biol Chem Hoppe-Seyler 370: 1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Tuttle JP, Wilson JE (1970) Brain hexokinase: A kinetic comparison of soluble and particulate forms. Biochim Biophys Acta 212: 185–188

    PubMed  CAS  Google Scholar 

  • Valentine WN, Oski FA, Paglia DE, Baughan MA, Schneider AS, Naiman JL (1967) Hereditary hemolytic anemia with hexokinase deficiency — role of hexokinase in erythrocyte aging. N Engl J Med 276: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Pass P, Froguel P, Cohen D (1992) Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356: 721–722

    Article  PubMed  CAS  Google Scholar 

  • Walters E, McClean P (1968) The effect of anti-insulin serum and alloxan-diabetes on the distribution and multiple forms of hexokinase in lactating rat mammary gland. Biochem J 109: 737–741

    PubMed  CAS  Google Scholar 

  • Wigley WC, Nakashima RA (1992) Evidence for multiple genes coding for the isozymes of hexokinase in the highly glycolytic AS-30D rat hepatoma. FEBS Lett 300: 153–456

    Article  PubMed  CAS  Google Scholar 

  • Wilson JE (1973) Ligand induced conformations of rat brain hexokinase: Effects of glucose 6-phosphate and inorganic phosphate. Arch Biochem Biophys 159: 543–549

    Article  PubMed  CAS  Google Scholar 

  • Wilson J E (1986) Regulation of mammalian hexokinase activity. In Beitner R (ed) Regulation of carbohydrate metabolism, Vol. I. CRC Press, Cleveland, pp 45–85

    Google Scholar 

  • Zagotta WN, Hoshi T, Aldrich RW (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568–571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adams, V., McCabe, E.R.B. (1994). Role of Porin-Kinase Interactions in Disease. In: Forte, M., Colombini, M. (eds) Molecular Biology of Mitochondrial Transport Systems. NATO ASI Series, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78936-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78936-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78938-0

  • Online ISBN: 978-3-642-78936-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics