Skip to main content

Somatic Embryogenesis in Sugarcane (Saccharum Species)

  • Chapter
Somatic Embryogenesis and Synthetic Seed II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 31))

Abstract

Sugarcane is the name given to sacchariferous, cultivated species and descendants of interspecific hybrids in the genus Saccharum, fafnily Graminae, tribe Andropogonae. Saccharum species are highly polyploid with no known diploid form. A basic chromosome number has not yet been firmly established, but is estimated in the range of 5–10 (Stevenson 1965). Until the late 1800s, sugarcane varieties belonged mostly to S officinarum (2n = 8x = 80), the “noble” cane originating from New Guinea, and also to S sinense (2n = 106−120) and S. barberi (2n = 80−120). Interspecific crosses between S officinarum and S. spontaneum, followed by two or three backcrossings to the noble cane — a process called nobilization — yielded the first modern commercial varieties(Saccharum ssp.) in the early 1900s in Java and later in India (Daniels and Roach 1987). The original hybrids were, in turn, crossed with each other to produce new commercial varieties. The limited genetic basis of the original hybridizations, which according to Arceneaux (1967) involved no more than 20 noble clones and fewer than 10 S. spontaneum derivatives, led various countries to reinitiate nobilization work in the early 1960s in order to transfer specific, desirable characters, such as disease resistance, from wild germplasm to commercial hybrids (Berding and Roach 1987). Current breeding goals are to develop cultivars with increased sugar yield and resistance to diseases (smut, mosaic, rust, leaf scald) and insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahfield H (ed) (1993) FO LICHT’s world sugar and sweetener yearbook: world statistics 1992/93. FO LICHT, Ratze burg

    Google Scholar 

  • Ahloowalia BS, Maretzki A (1993) Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep 2: 21–25

    Google Scholar 

  • Arceneaux G (1967) Cultivated sugarcanes of the world and their botanical derivations. Proc 12th ISSCT Congr, 28 March- to April 1965, Puerto Rico. Elsevier, Amsterdam, pp 844–854

    Google Scholar 

  • Bajaj YPS, Korneva SB, Gutierrez R, Maribona RH (1987) Freeze preservation of plantlets, excised meristems and cell cultures of sugarcane (Saccharum officinarum L.) at -196 °C. In: Bose A, Sengupta P (eds) Proc Int Conf Cryogenics. McGraw-Hill, New Delhi, pp 222–226

    Google Scholar 

  • Berding N, Roach BT (1987) Germplasm, collection, maintenance and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Developments in crop science, vol 11. Elsevier, Amsterdam, pp 143–210

    Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2: 409–416

    Article  CAS  Google Scholar 

  • Brisibe EA, Nishioka D, Miyake H, Tanigushi T, Maeda E (1993) Developmental electron microscopy and histochemistry of somatic embryo differentiation in sugarcane. Plant Sci 89: 85–92

    Article  CAS  Google Scholar 

  • Chagvardieff P, Bonnel E, Demarly Y (1981) La culture in vitro de tissues somatiques de canne a sucre (Saccharum sp.). L’Agron Trop 36: 266–278

    Google Scholar 

  • Chen LJ, Luthe DS (1987) Analysis of proteins from embryogenic and nonembryogenic rice (Oryza saliva L.) calli. Plant Sci 48: 181–188

    Article  CAS  Google Scholar 

  • Chen WH, Gartland KMA, Davey MR, Sotak R, Gartland JS, Mulligan BJ, Power JB, Cocking EC (1987) Transformation of sugarcane protoplasts by direct uptake of a selectable chimaeric gene. Plant Cell Rep 6: 297–301

    Article  CAS  Google Scholar 

  • Chen WH, Davey MR, Power JB, Cocking EC (1988a) Control and maintenance of plant regeneration in sugarcane callus cultures. J Exp Bot 39: 251–261

    Article  CAS  Google Scholar 

  • Chen WH, Davey MR, Power JB, Cocking EC (1988b) Sugarcane protoplasts: factors affecting division and plant regeneration. Plant Cell Rep 7: 344–347

    Article  CAS  Google Scholar 

  • Chowdhury MKV, Vasil IK (1992) Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep 11:494–498

    Article  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC Chu YC, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sin 18: 659–668

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Developments in crop science vol. 11. Elsevier, Amsterdam, pp 7–84

    Google Scholar 

  • D’Hont A, Lu YH, Gonzalez de Leon D, Grivet L, Feldmann P, Lanaud C, Glaszmann JC (1994) A molecular approach to unravelling the genetics of sugarcane, a complex polyploid of the Andropogonae tribe. Genome 37: 222–230

    Article  PubMed  Google Scholar 

  • Eksomtramage T, Paulet F, Guiderdoni E, Glaszman JC, Engelman F (1992) Development of a cryopreservation process for embryogenic calluses of a commercial hybrid of sugarcane (Succharum sp) and application to different varieties. Cryo Lett 13: 239–252

    Google Scholar 

  • FAO (1993) Production, yearbook: 1992, vol 46. FAO statistic series 112, FAO, Rome

    Google Scholar 

  • Fitch MMM, Moore PH (1990) Comparison of 2,4-D and picloram of longer-term totipotent green callus culture of sugarcane. Plant Cell Tissue Organ Cult 20: 157–163

    CAS  Google Scholar 

  • Fitch MMM, Moore PH (1993) Long term culture of embryogenic sugarcane callus. Plant Cell Tissue Organ Cult 32: 335–343

    Article  CAS  Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust J Plant Physiol 18: 471–480

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12: 666–670

    Article  CAS  Google Scholar 

  • Gambley RL, Frod R, Smith GR (1993) Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing p-glucoronidase. Plant Cell Rep 12: 343–346

    Article  CAS  Google Scholar 

  • Gnanapragasam S, Vasil IK (1990) Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid(Saccharum sp.) Plant Cell Rep 9: 419–423

    Article  CAS  Google Scholar 

  • Guiderdoni E, Demarly Y (1988) Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tissue Organ Cult 14: 71–88

    Article  Google Scholar 

  • Heinz DJ, Krishnamurthi M, Nickell LG, Maretzki A (1977) Cell, tissue and organ culture in sugarcane improvement. In: Reinert J, YPS Bajaj (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 3–17

    Google Scholar 

  • Ho WJ, Vasil IK (1983a) Somatic embryogenesis in sugarcane (Saccharum Officianarum L.) 1. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protopalsma 118: 169–180

    Google Scholar 

  • Ho WJ, Vasil IK (1983b) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51: 719–726

    Google Scholar 

  • Irvine JE, Benda GTA (1985) Sugarcane mosaic virus in plantlets regenerated from diseased leaf tissue. Plant Cell Tissue Organ Cult 5: 101–106

    Article  Google Scholar 

  • Irvine JE, Fitch M, Moore PH (1983) The induction of callus in sugarcane tissue cultures by selected chemicals. Plant Cell Tissue Organ Cult 2: 141–149

    Article  CAS  Google Scholar 

  • Jian LC, Sun DL, Sun LH (1987) Sugarcane callus cryopreservation. In: Li PH (ed) Plant biology, vol 5. Plant cold hardiness. A R Liss, New York, pp 323–337

    Google Scholar 

  • Kao KN (1977) Chromosomal behaviour in somatic hybrids of soybean - Nicotiana glauca. Mol Gen Genet 150: 225–230

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126: 105–110

    Article  CAS  Google Scholar 

  • Larkin PJ (1982) Sugarcane tissue and protoplast culture. Plant Cell Tissue Organ Cult 1: 149–163

    Article  CAS  Google Scholar 

  • Liu MC (1981) In vitro methods applied to sugarcane improvement In: Thorpe TA (ed) Plant tissue culture; methods and applications in agriculture. Academic Press, New York, pp 299–323

    Google Scholar 

  • Liu MC (1984) Sugarcane. In: Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) handbook of plant cell culture, 2. Crop species. MacMillan, New York, pp 573–605

    Google Scholar 

  • Liu MC, Chen WH (1974) Histological studies on the origin and process of plantlet differentiation in sugarcane callus mass. Proc 15th ISSct Congr, 13–29 June 1974, Durban, South Africa, pp 1–12

    Google Scholar 

  • Liu MC, Chen WH, SC Shih (1982) Histogenesis of sugarcane callus originating from young leaf and stem tip expiants. Can J Bot 60: 2889–2895

    Article  Google Scholar 

  • Maldiney R, Leroux B, Sabbagh I, Sotta B, Sossountzov L, Miginiac E (1986) A biotin-avidine based enzyme immunassay to quantify three phytohormones: auxin, abscisic acid and zeatin-riboside. J Immunol Methods 90: 151–158

    Article  CAS  Google Scholar 

  • Maretzki A (1987) Tissue culture: its prospects and problems. In: Heinz DJ (ed) Sugarcane improvement through breeding. Developments in crop science vol. 11. Elsevier, Amsterdam, pp 343–384

    Google Scholar 

  • Maretzki A, Hiraki P (1980) Sucrose promotion of root formation in plantlets regenerated from callus of Saccharum spp. Phyton 38: 85–88

    Google Scholar 

  • Maretzki A, Nickell LG (1973) Formation of protoplasts from sugarcane cell suspensions and the regeneration of cell cultures from protoplasts. In: Protoplastes et fusion de cellules somatiques végétales, colloques Int CNRS No 212. CNRS Editions, Gifs/Yvette, France, pp 51–63

    Google Scholar 

  • Mérot B (1988) Etudes de F embryogenèse somatique de la canne à sucre (Saccharum sp.): optimisation de la production, application aux cultures de cellules et de protoplastes, analyses cytologiques, biochimiques et hormonales. Plant Development and Improvement. Doctoral Thesis, Orsay University, Paris XI, France, 295 pp

    Google Scholar 

  • Mérot B, Guiderdoni E (1987) Somatic embryogenesis in cultured leaf segments of sugarcane (Saccharum sp.) plantlets: first report of in vitro conversion of encapsulated somatic embryos to plants. In: Abstr 1st Int Cong Plant Tissue Cult, Tropical Species, 21–25 Sept 1987. Bogota, Colombia

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nadar HM, Heinz DJ (1977) Root and shoot development from sugarcane callus tissue. Crop Sci 17: 814–816

    Article  Google Scholar 

  • Nadar HM, Soepraptopo S, Heinz DJ, Ladd SL (1978) Fine structure of sugarcane (Saccharum sp.) callus and the role of auxin in embryogenesis. Crop Sci 17: 210–216

    Article  Google Scholar 

  • Nickell LG, Maretzki A (1969) Growth of suspension cultures of sugarcane in a chemically defined medium. Physiol Plant 22: 117–125

    Article  CAS  Google Scholar 

  • Rathus C, Birch RG (1992a) Optimization of conditions for electroporation and transient expression of foreign genes in sugarcane protoplasts. Plant Sci 81: 65–74

    Article  CAS  Google Scholar 

  • Rathus C, Birch RG (1992b) Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci 82: 81–89

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of mono- cotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204

    Article  CAS  Google Scholar 

  • Srinivasan C, Vasil. IK (1986) Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J Plant Physiol 126: 41–48

    CAS  Google Scholar 

  • Stevenson GC (1965) Genetics and breeding of sugarcane. Tropical Science Series. Longman, London, 284 pp

    Google Scholar 

  • Tabaiezadeh Z, Feri RJ, Vasil IK (1986) Somatic hybridization in the Graminae: Saccharum officinarum L. (sugarcane) andPennisetum americanum (L.) K. Schum. (pearl millet). Proc Natl Acad Sci USA 83: 5616–5619

    Article  Google Scholar 

  • Taylor PWJ, Ko HL, Adkins SW, Rathus C, Birch RG (1992) Establishment of embryogenic callus and high protoplast yielding suspension cultures of sugarcane(Saccharum spp. hybrids). Plant Cell Tissue Organ Cult 28: 69–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guiderdoni, E., Mérot, B., Eksomtramage, T., Paulet, F., Feldmann, P., Glaszmann, J.C. (1995). Somatic Embryogenesis in Sugarcane (Saccharum Species). In: Bajaj, Y.P.S. (eds) Somatic Embryogenesis and Synthetic Seed II. Biotechnology in Agriculture and Forestry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78643-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78643-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78645-7

  • Online ISBN: 978-3-642-78643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics