Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 112))

Abstract

Virtually all types of xenobiotic acids form 1-O-acyl glucuronides. Many other xenobiotic compounds are metabolized to carboxylic acids, which subsequently undergo phase II conjugation with glucuronic acid. Often such a conjugate constitutes the major metabolite. Many examples are found among the hypolipidemic agents, diuretic agents, and nonsteroidal anti-inflammatory drugs. Most herbicides are metabolized in this manner by fish, birds and mammals. 1-O-Acyl glucuronides are also formed from endogenous lipids such as retinoic acid, lithocholic acid and bilirubin. The major site of conjugation in humans is the liver. 1-O-Acyl glucuronides are excreted through the bile duct and the kidney, and many of these conjugates have been shown to circulate in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson FP (1990) Mass spectrometry in pharmacology. In: Saulter CH, Watson JT (eds) Biomedical applications of mass spectrometry. Wiley, New York, pp 289–347 (Methods of biochemical analysis, vol 34)

    Google Scholar 

  • Bax A, Egan W, Kovac P (1984) New NMR techniques for structure determination and resonance assignments of complex carbohydrates. J Carbohyd Chem 3: 593–611

    Article  CAS  Google Scholar 

  • Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patrick JS, Amhed MU, Dunn JA, Thorpe SR (1988) The Amadori product on protein: structure and reactions. In: Baynes JW, Monnier VM (eds) Maillard reaction in aging, diabetes, and nutrition. Liss, New York, pp 43–67

    Google Scholar 

  • Blanckaert N, Compemolle F, Leroy P, Van Houtte R, Fevery J, Heirwegh KPM (1978) The fate of bilirubin-IXa glucuronide in cholestasis and during storage in vitro intermolecular rearrangement to positional isomers of glucuronic acid. Biochem J 171: 203–214

    PubMed  CAS  Google Scholar 

  • Bonner WA (1959) C1-C2 acetyl migration on methylation of the anomeric 1,3,4,6-tetra-O-aeetyl-D-glucopyranoses. J Org Chem 24: 1388–1390

    Article  CAS  Google Scholar 

  • Bradow G, Kan LS, Fenselau C (1989) Studies of intramolecular rearrangements of acyl-linked glucuronides using salicylic acid, flufenamie acid, and (S)- and (R)-benoxaprofen and confirmation of isomerization in acyl-linked A9-ll-carboxytetrahydrocannabinol glucuronide. Chem Res Toxicol 2: 316–324

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J, HĂĽtt AJ, Marsh MV, Sinclair KA (1983) Isolation and characterization of amino acid and sugar conjugates of xenobiotic carboxylic acids. In: Reid E, Leppard EP (eds) Drug metabolite isolation and determination. Plenum, New York, pp 161–178

    Google Scholar 

  • Caldwell J, Grubb N, Sinclair KA, HĂĽtt AJ, Weil A, Fournel-Gigleux S (1988) Structural and sterochemical aspects of acyl glucuronide formation and reactivity. In: Siest G, Magdalou J, Burehell B (eds) Cellular and molecular aspects of glucuronidation. Libbey, Paris, pp 185–192

    Google Scholar 

  • Compemolle F, Jansen FH, Heirwegh PM (1970) Mass-spectrometric study of the azopigments obtained from bile pigments with diazotized ethyl anthranilate. Biochem J 120: 891–894

    Google Scholar 

  • Compemolle F, Van Hees GP, Blanckaert N, Heirwegh KP (1978) Glucuronic acid conjugates of bilirubin-IXa in normal bile compared with post-obstructive bile transformation of the 1-O-acylglucuronide into 2-, 3-, and 4-acylglucuronides. Biochem J 171: 185–201

    Google Scholar 

  • Dickinson RG, King AR (1991) Studies on the reactivity of acyl glucuronides-II: interactions of diflunisal acyl glucuronide and its isomers with human serum albumin in vitro. Biochem Pharmacol 42: 2301–2306

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RG, Verbeeck RK, King AR, Restifo AC, Pond SM (1991) Diflunisal and its conjugates in patients with renal failure. Br J Clin Pharmacol 31: 546–550

    PubMed  CAS  Google Scholar 

  • Ding A, Ojingwa JC, McDonagh AF, Burlingame AL, Benet LZ (1993) Evidence for Covalent Binding of Acyl Glucuronides to Serum Albumin via an Imine Mechanism as Revealed by Tandem Mass Spectrometry. Proc Nat Acad Sei USA 90: 3797–3801

    Article  CAS  Google Scholar 

  • Doerschuk AP (1952) Acyl migrations in partially acylated, poly hydroxy lie systems. J Am Chem Soc 74: 4202–4207

    Article  CAS  Google Scholar 

  • Dutton GJ (1966) Glucuronic acid free and combined. Academic, New York

    Google Scholar 

  • Faed EM (1984) Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev 15: 1213–1249

    Article  PubMed  CAS  Google Scholar 

  • Fenselau C (1992) Tandem mass spectrometry: the competitive edge for pharmacology. Annu Rev Pharmacol Toxicol 32: 555–578

    Article  PubMed  CAS  Google Scholar 

  • Fenselau C, Yelle L (1986) Analysis of glucuronides, sulfates and glutathione conjugates by mass spectrometry. In: Paulson GD, Caldwell J, Watson DH, Menn JJ (eds) Xenobiotic conjugation chemistry. ACS Symposium Series. American Chemical Society, Washington, pp 159–176

    Chapter  Google Scholar 

  • Fischer E (1920) Wanderung von Acyl bei den Glyceriden. Chem Ber 53: 1621–1633

    Google Scholar 

  • Garlick RL, Mazer JS (1983) The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem 258: 6142–6146

    PubMed  CAS  Google Scholar 

  • Gautam A, Sellgson H, Gordon ER, Sellgson D, Boyer JL (1984) Irreversible binding of conjugated bilirubin to albumin in cholestatic rats. J Clin Invest 73: 873–877

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Moller J, Cornett C, Dalgaard L, Hansen SH (1988) Isolation and identification of the rearrangement products of diflunisal 1-O-acyl glucuronide. J Pharm Belg 6: 229–240

    CAS  Google Scholar 

  • Hansen-Moller J, Schmit U (1991) Rapid high-performance liquid chromatographic assay for the simultaneous determination of probenecid and its glucuronide in urine. Irreversible binding of probenecid to serum albumin. J Pharm Belg 9: 65–73

    Google Scholar 

  • Harding J J (1985) Nonenzymatic covalent post-translational modification of proteins in vivo. Adv Prot Chem 37: 247–334

    Article  CAS  Google Scholar 

  • Hayball PJ, Nation RL, Bochner F (1992) Stereoselective interactions of ketoprofen glueuronides with human plasma protein and serum albumin. Biochem Pharmacol 44: 291–299

    Article  PubMed  CAS  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Hignite CE, Tschanz C, Lemons S, Wiese H, Azarnoff DL, Huffman DH (1981) Glucuronic acid conjugates of clofibrate: four isomeric structures. Life Sci 28: 2077–2081

    Article  PubMed  CAS  Google Scholar 

  • Hirayama K, Akashi S, Furuya M, Fukuhara KI (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and FRITFAB LC/MS. Biochem Biophys Res Commun 173: 639–646

    Article  PubMed  CAS  Google Scholar 

  • Hyneck ML, Smith PC, Unseld E, Benet LZ (1987) High-performance liquid chromatographic determination of tolmetin, tolmetin glucuronide and its isomeric conjugates in plasma and urine. J Chromatogr 420: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Hyneck ML, Munafo A, Benet LZ (1988) Effect of pH on acyl migration and hydrolysis of tolmetin glucuronide. Drug Metab Dispos 16: 322–324

    PubMed  CAS  Google Scholar 

  • Iwakawa S, Spahn H, Benet LZ, Lin ET (1990) Stereoselective binding of the glucuronide conjugates of carprofen enantiomers to human serum albumin. Biochem Pharmacol 39: 949–953

    Article  PubMed  CAS  Google Scholar 

  • Janssen FW, Kirkman SK, Fenselau C, Stogniew M, Hofmann BR, Young EM, Ruelius HW (1982) Metabolic formation of N- and O-glucuronides of 3-(pchlorophenyl) thiazolo[3,2-a] benzimidazole-2-acetic acid rearrangement of the 1-O-acyl glucuronide. Drug Metab Dispos 10: 599–604

    PubMed  CAS  Google Scholar 

  • King AR, Dickinson RG (1991) Studies on the reactivity of acyl glucuronides-I phenolic glucuronidation of isomers of diflunisal acyl glucuronide in the rat. Biochem Pharmacol 42: 2289–2299

    Article  PubMed  CAS  Google Scholar 

  • King AR, Dickinson RG (1993) Studies on the reactivity of acyl glucuronides-IV covalent binding of diflunisal to tissues of the rat. Biochem Pharmacol 45: 1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Komura H, Fukui H, Sasaki H, Morino A (1992) Pharmacokinetic analysis of enterohepatie circulation of 4-[2-(4-isopropylbenzamido) ethoxy] benzoic acid. Drug Metab Disp 20: 585–591

    CAS  Google Scholar 

  • Kurono Y, Kondo T, Ikeda K (1983) Esterase-like activity of human serum albumin: enantioselectivity in the burst phase of reaction with p-nitrophenyl a-methoxyphenyl acetate. Arch Biochem 227: 339–341

    Article  PubMed  CAS  Google Scholar 

  • Lee AT, Cerami A (1989) Nonenzymatic glycosylation of DNA by reducing sugars. In: Baynes JW, Monnier VM (eds) Maillard reaction in aging, diabetes, and nutrition. Liss, New York, pp 291–299

    Google Scholar 

  • Lippel K, Olsen JA (1968) Origin of some derivatives of retinoic acid found in rat bile. J Lipid Res 9: 580–586

    PubMed  CAS  Google Scholar 

  • Maclouf J, Kindahl H, Granstrom E, Samuelsson B (1980) Interactions of prostaglandin H2 and thromboxane A2 with human serum albumin. Eur J Biochem 109: 561–566

    Article  PubMed  CAS  Google Scholar 

  • McDonagh AF, Palma LA, Lauff JJ, Wu TW (1984) Origin of mammalian biliprotein and rearrangement of bilirubin glueuronides in vivo in the rat. J Clin Invest 74: 763–770

    Article  PubMed  CAS  Google Scholar 

  • McKinnon GE, Dickinson RG (1989) Covalent binding of diflunisal and probenecid to plasma protein in humans: persistence of the adduets in the circulation. Res Commun Chem Pathol Pharmacol 66: 339–354

    PubMed  CAS  Google Scholar 

  • Munafo A, McDonagh AF, Smith PC, Benet LZ (1990) Irreversible binding of tolmetin glucuronic acid esters to albumin in vitro. Pharm Res 7: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Musson DG, Lin JH, Lyon KA, Tocco DJ, Yek KC (1985) Assay methodology for quantification of the ester and ether glucuronide conjugates of diflunisal in human urine. J Chromatogr 337: 363–378

    Article  PubMed  CAS  Google Scholar 

  • Olson JA, Moon RC, Anders MW, Fenselau C, Shane B (1992) Enhancement of biological activity by conjugation reactions. J Nutr 122: 615–624

    PubMed  CAS  Google Scholar 

  • Panfil I, Lehman PA, Zimniak P, Ernst B, Franz T, Lester R, Radominska A (1992) Biosynthesis and chemical synthesis of carboxyl–linked glucuronide of lithocholic acid. Biochim Biophys Acta 1126: 221–228

    PubMed  CAS  Google Scholar 

  • Peters T (1985) Serum albumin. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 37. Academic, Orlando, pp 161–245

    Google Scholar 

  • Pohl LR, Branchflower RV (1981) Covalent binding of electrophilic metabolities to macromolecules. Methods Enzymol 77: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Pumford NR, Meyers TG, Davila JC, Highet RJ, Pohl LR (1993) Immunochemical detection of liver protein adducts of the non steroidal antiinflammatory drug diclofenac. Chem Res Toxicol 6: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Rachmel A, Hazelton GA, Yergey AL, Liberato DJ (1985) Furosemide l-Oacyl glucuronide in vitro biosynthesis and pH-dependent isomerization to β-glucuronidase-resistant forms. Drug Metab Dispos 13: 705–710

    PubMed  CAS  Google Scholar 

  • Reed RG, Davidson LK, Burrington CM, Peters T Jr (1988) Non-resolving jaundice: bilirubin covalently attached to serum albumin circulates with the same metabolic half-life as albumin. Clin Chem 34: 1992–1994

    PubMed  CAS  Google Scholar 

  • Robb DA, Olufemi OS, Williams DA, Midgley JM (1989) Identification of glycation at the N-terminus of albumin by gas chromatography-mass spectrometry. Biochem J 261: 871–878

    PubMed  CAS  Google Scholar 

  • Ruelius HW, Young EM, Kirkman SK, Schillings RT, Sisenwine SF, Janssen FW (1985) Biological fate of acyl glucuronides in the rat the role of rearrangement, intestinal enzymes and reabsorption. Biochem Pharmacol 34: 451–452

    Article  CAS  Google Scholar 

  • Ruelius HW, Kirkman SK, Young EM, Fanssen FW (1986) Reactions of oxaprozin-1-O-acyl glucuronide in solutions of human plasma and albumin. Adv Exp Med Biol 197: 431–441

    PubMed  CAS  Google Scholar 

  • Sallustio BC, Puride YJ, Birkett DJ, Meffin PJ (1989) Effect of renal dysfunction on the acyl-glucuronide futile cycle. J Pharmacol Exp Ther 251: 288–294

    PubMed  CAS  Google Scholar 

  • Sallustio BC, Knights KM, Roberts BJ, Zacest R (1991) In vivo covalent binding of clofibric acid to human plasma proteins and rat liver proteins. Biochem Pharmacol 42: 1421–1425

    Article  PubMed  CAS  Google Scholar 

  • Salmon M, Fenselau C, Cukier JO, Odell GB (1975) Rapid transesterification of bilirubin glucuronides in methanol. Life Sci 15: 2069

    Article  Google Scholar 

  • Sani BP, Barua AB, Hill DL, Shih TW, Olson JA (1992) Retinoyl β-glucuronide: lack of binding to receptor proteins of retinoic acid as related to biological activity. Biochem Pharmacol 43: 919–922

    Article  PubMed  CAS  Google Scholar 

  • Smith PC, Benet LZ (1986) Characterization of the isomeric esters of zomepirac glucuronide by proton NMR. Drug Metab Dispos 14: 503–505

    PubMed  CAS  Google Scholar 

  • Smith PC, Hasegawa J, Langendijk NJ, Benet LZ (1985) Stability of acyl glucuronides in blood, plasma, and urine: studies with zomepirac. Drug Metab Dispos 13: 110–112

    PubMed  CAS  Google Scholar 

  • Smith PC, McDonagh AF, Benet LZ (1986) Irreversible binding of zomepirac to plasma protein in vitro and in vivo. J Clin Invest 77: 934–939

    Article  PubMed  CAS  Google Scholar 

  • Smith PC, Benet LZ, McDonagh AF (1990) Covalent binding of zomepirac glucuronide to proteins: evidence for a schiff base mechanism. Drug Metab Dispos 18: 639–644

    PubMed  CAS  Google Scholar 

  • Smith PC, Song WQ, Rodriguez RJ (1992) Covalent binding of etodolac acyl glucuronide to albumin in vitro. Drug Metab Disp 20: 962–965

    CAS  Google Scholar 

  • Spahn H (1988) Assay method for product formation in in vitro enzyme kinetic studies of uridine diphosphate glucuronytransferases: 2-arylpropionic acid enantiomers. J Chromotogr 430: 368–375

    Article  CAS  Google Scholar 

  • Spahn H, Iwakawa S, Lin ET, Benet LZ (1989) Procedures to properly characterize in vivo and in vitro enantioselective glucuronidation: studies with benoxaprofen glucuronides. Pharmacol Res 6: 125–132

    Article  CAS  Google Scholar 

  • Spahn-Langguth H, Benet LZ (1992) Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab Rev 24: 5–48

    Article  PubMed  CAS  Google Scholar 

  • Stogniew M, Fenselau C (1982) Electrophilic reactions of acyl-linked glucuronides formation of clofibrate mercapturate in humans. Drug Metab Dispos 10: 609–613

    PubMed  CAS  Google Scholar 

  • Takahashi N, Takahashi Y, Blumberg BS, Putnam FW (1987) Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning. Proc Natl Acad Sci USA 84: 4413–4417

    Article  PubMed  CAS  Google Scholar 

  • van Breemen RB, Fenselau C (1984) Acylation of albumin by 1-O-acyl glucuronides. Drug Metab Dispos 13: 318–320

    Google Scholar 

  • van Breemen RB, Fenselau CC (1985) Reaction of 1-O-acyl glucuronides with 4-(pnitrobenzyl) pyridine. Drug Metab Dispos 14: 197–201

    Google Scholar 

  • van Breeman RB, Fenselau C, Mogilevsky W, Odell GB (1986) Reaction of bilirubin glucuronides with serum albumin. J Chromatogr 383: 387–392

    Article  Google Scholar 

  • van Breeman RB, Stogniew M, Fenselau C (1988) Characterization in acyl-linked glucuronides by electron impact and fast atom bombardment mass spectrometry. Biomed Environ Mass Spectrom 17: 97–103

    Article  Google Scholar 

  • Volland C, Sun H, Dammeyer J, Benet LZ (1991) Stereoselective degradation of the fenoprofen acyl glucuronide enantiomers and irreversible binding to plasma protein. Drug Metab Dispos 19: 1080–1086

    PubMed  CAS  Google Scholar 

  • Watt JA, Dickinson RG (1990) Reactivity of diflunisal acyl glucuronide in human and rat plasma albumin solutions. Biochem Pharmacol 39: 1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Watt JA, King AR, Dickinson RG (1991) Contrasting systemic stabilities of the acyl and phenolic glucuronides of diflunisal in the rat. Xenobiotica 21: 403–415

    Article  PubMed  CAS  Google Scholar 

  • Weil A, Guichard JP, Caldwell J (1988) Interactions between fenofibryl glucuronide and human serum albumin or human plasma. In: Siest G, Magdalou J, Burchell B (eds) Cellular and molecular aspects of glucuronidation. Colloque INSERM/John Libbey Eurotext 173, pp 233–236

    Google Scholar 

  • Wells DS, Janssen FW, Ruelius HW (1987) Interactions between oxaprozin glucuronide and human serum albumin. Xenobiotica 17: 1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Williams AM, Worrall S, De Jersey J, Dickinson RG (1992) Studies on the reactivity of acyl glucuronides: III. Glucuronide-derived adducts of valproic acid and plasma protein and anti-adduct antibodies in humans. Biochem Pharmacol 43: 745–755

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Inagaki T, Hirano M, Sugimoto T (1987) Analyses of azopigments obtained from the delta fraction of bilirubin from mammalian plasma (mammalian biliprotein). Biochem J 248: 79–84

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fenselau, C. (1994). Acyl Glucuronides as Chemically Reactive Intermediates. In: Kauffman, F.C. (eds) Conjugation—Deconjugation Reactions in Drug Metabolism and Toxicity. Handbook of Experimental Pharmacology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78429-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78429-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78431-6

  • Online ISBN: 978-3-642-78429-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics