Skip to main content

Physiology of Cerebrospinal Fluid Circulation: Amphibians, Mammals, and Hydrocephalus

  • Conference paper
The Subcommissural Organ
  • 69 Accesses

Abstract

The chemical environment of the brain is buffered from external influences by the blood—brain barrier at the brain capillary endothelium, the blood—cerebrospinal fluid (CSF) barrier at the choroid plexus epithelium and by a barrier membrane, the arachnoid, which envelops the brain and CSF. The CSF is secreted by the choroid plexuses which are sited inside the cerebral ventricles (two lateral ventricles, third and fourth ventricles). The composition of the CSF is closely regulated, having a lower K+ and Ca2+ concentration and a higher Na+ and Mg2+ concentration than would be expected from a simple plasma ultrafiltrate. Proteins and nonelectrolytes such as urea, glucose and amino acids are also low in CSF. One function of the CSF, together with the blood—brain barrier, therefore, is to maintain brain ion homeostasis and provide the correct chemical environment for neuronal function. A second function is to provide buoyancy for the brain by maintaining a hydrostatic pressure on both its internal and external aspects. Thus the human brain weighs approximately 1300 g in air but only 50 g in water and the CSF is assumed to provide protection from injury. A third, less convincing, function of the CSF may be to provide a flow pathway for the transportation of waste products and pharmacologically active substances. In support of this, many secretory/sensory circumventricular organs are situated in specialised ependyma adjacent to the CSF. However, because CSF turnover is slow and measured in hours rather than minutes, only very local transportation would have a rapid response time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruni JE, Del Bigio MR, Cardoso ER, Persaud TVN (1988) Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 35: 239–246

    PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr HF (1981) A glial blood-brain barrier in elasmobranchs. Brain Res 226: 61–73

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr HF (1991) Barrier membranes at the outer surface of the brain of an elasmobranch, Raja erinacea. Cell Tissue Res 265: 113–120

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain JG (1973) Analysis of developing ependymal and choroidal surfaces in rat brains using scanning electron microscopy. Dev Biol 31: 22–30

    Article  PubMed  CAS  Google Scholar 

  • D’Amato CJ, O’Shea KS, Hicks SP, Glover RA, Annesley TM (1986) Genetic prenatal aqueductal stenosis with hydrocephalus in rat. J Neuropathol Exp Neurol 45: 665–682

    Article  PubMed  Google Scholar 

  • Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93: 665–678

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Welch K, Segal MB (1987) The physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Heisey SR, Michael DK (1971) Cerebrospinal fluid formation and bulk absorption in the freshwater turtle. Exp Neurol 31: 258–262

    Article  PubMed  CAS  Google Scholar 

  • Irigoin C, Rodriguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Exp Brain Res 82: 384–392

    Article  PubMed  CAS  Google Scholar 

  • Jones HC (1978) Continuity between the ventricular and subarachnoid cerebrospinal fluids in an amphibian, Rana pipiens. Cell Tissue Res 195: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Jones HC (1979) Fenestration of the epithelium lining the roof of the fourth cerebral ventricle in Amphibia. Cell Tissue Res 198: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Jones HC (1980a) Circulation of marker substances in the cerebrospinal fluid of an amphibian, Rana pipiens. Cell Tissue Res 211: 317–330

    Article  PubMed  CAS  Google Scholar 

  • Jones HC (1980b) Intercellular pores between the ependymal cells lining the roof of the fourth cerebral ventricle in mammalian fetuses. Z Kinderchir 31: 309–316

    Google Scholar 

  • Jones HC (1982) The ultrastructure of the rhombencephalic posterior tela and adjacent tissues in an amphibian, Rana pipiens. J Anat 134: 91–102

    PubMed  CAS  Google Scholar 

  • Jones HC (1985) The cerebrospinal fluid pressure and resistance to absorption during development in normal and hydrocephalic mutant mice. Exp Neurol 90: 162–172

    Article  PubMed  CAS  Google Scholar 

  • Jones HC, Bucknall RM (1987) Changes in cerebrospinal fluid pressure and outflow from the lateral ventricles during development of congenital hydrocephalus in the H-Tx rat. Exp Neurol 98: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Jones HC, Bucknall RM (1988) Inherited prenatal hydrocephalus in the H-Tx rat: a morphological study. Neuropathol Appl Neurobiol 14: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Jones HC, Dolman GS (1979) The structure of the roof of the fourth ventricle in pigeon and chick brains by light and electron microscopy. J Anat 128: 13–29

    PubMed  CAS  Google Scholar 

  • Jones HC, Gratton JA (1989) The effect of cerebrospinal fluid pressure on dural venous pressure in young rats. J Neurosurg 71: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Jones HC, Jopling CAC (1983) The development of interependymal pores in the rhombencephalic posterior tela in late embryonic, larval and metamorphosing stages of Rana pipiens. Dev Brain Res 7: 121–130

    Article  Google Scholar 

  • Jones HC, Keep RF (1987) The control of potassium concentration in the cerebrospinal fluid and brain interstitial fluid of developing rats. J Physiol 383: 441–453

    PubMed  CAS  Google Scholar 

  • Jones HC, Keep RF (1988) Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. J Physiol 402: 579–593

    PubMed  CAS  Google Scholar 

  • Jones HC, Seilars RA (1982) The movement of fluid out of the cerebral ventricles in fetal and neonatal rats. Z Kinderchir 37: 130–133

    Google Scholar 

  • Jones HC, Taylor CM (1983) Morphological changes in amphibian ventricular ependymal after infusion with Evans blue dye. J Physiol 339: 48–49 P

    Google Scholar 

  • Jones HC, Taylor CM (1984) Absorption of the cerebrospinal fluid and intracranial compliance in an amphibian Rana pipiens. J Physiol 353: 405–417

    PubMed  CAS  Google Scholar 

  • Jones HC, Dack S, Ellis C (1987a) Morphological aspects of the development of hydrocephalus in a mouse mutant (SUMS/NP). Acta Neuropathol (Berl) 72: 268–276

    Article  CAS  Google Scholar 

  • Jones HC, Deane R, Bucknall RM (1987b) Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Dev Brain Res 33: 23–30

    Article  Google Scholar 

  • Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res 56: 47–53

    Article  CAS  Google Scholar 

  • Keep RF, Jones HC, Cawkwell RD (1986) A morphometric analysis of the development of the fourth ventricle choroid plexus in the rat. Dev Brain Res 27: 77–85

    Article  Google Scholar 

  • Mann JD, Mann ES, Cookson SL (1980) Differential effects of pentobarbital, ketamine hydrochloride and enflurane anaesthesia on CSF formation rate and outflow resistance in the rat. In: Miller JD, Becker DP, Hochwald G, Marmarou A, Shulman K (eds) Intracranial pressure IV. Springer, Berlin Heidelberg New York, pp 466–471

    Chapter  Google Scholar 

  • Momose Y, Kohno K, Ryuzo I (1988) Ultrastructural study on the meninx of the goldfish brain. J Comp Neurol 270: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Overholzer MD, Whitley JR, O’Dell BL, Hogan AG (1954) The ventricular system in hydrocephalic rat brains produced by a deficiency of vitamin B12 or of folic acid in the maternal diet. Anat Rec 120: 917–933

    Article  Google Scholar 

  • Rovainen CM, Lemcoe GE, Peterson A (1971) Structure and chemistry of glucoseproducing cells in meningeal tissue of the lamprey. Brain Res 30: 99–118

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Goto H, Nagano H, Furuya K, Omata Y, Kanazawa K, Suzuki K, Sudo K, Collmann H (1983) Congenital hydrocephalus revealed in the inbred rat LEW/Jms. Neurosurgery 13: 548–554

    Article  PubMed  CAS  Google Scholar 

  • Strong RM, Alban H (1932) The development of the lateral apertures of the fourth ventricle in the albino rat brain. Anat Rec 52: 39

    Google Scholar 

  • Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8: 143–150

    PubMed  CAS  Google Scholar 

  • Takeuchi IK, Takeuchi Y (1987) Dysgenesis of subcommissural organ in the congenital hydrocephalic rats induced by prenatal methylnitrosourea (MNU) treatment. Teratology 36: 444

    Google Scholar 

  • Takeuchi IK, Kimura R, Matsuda M, Shoji R (1987) Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HOK1dr mice. Acta Neuropath (Berl) 73: 320–322

    Article  CAS  Google Scholar 

  • Takeuchi IK, Kimura R, Shoji R (1988) Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in CWS/Idr rats. Experientia 44: 338–340

    Article  PubMed  CAS  Google Scholar 

  • Tornheim PA, Foltz FM (1979) Circulation of the CSF in the bullfrog, Rana catesbeiana. Anat Rec 194: 389–404

    Article  PubMed  CAS  Google Scholar 

  • Tornheim PA, Michaels JE (1979) Fine structure of the rhombencephalic tela of the bullfrog, Rana catesbeiana. Cell Tissue Res 202: 479–491

    Article  PubMed  CAS  Google Scholar 

  • Weed LH (1917) The development of the CSF spaces in pig and in man. Contrib Embryol 14: 1–116

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, H.C. (1993). Physiology of Cerebrospinal Fluid Circulation: Amphibians, Mammals, and Hydrocephalus. In: Oksche, A., Rodríguez, E.M., Fernández-Llebrez, P. (eds) The Subcommissural Organ. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78013-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78013-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78015-8

  • Online ISBN: 978-3-642-78013-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics