Advertisement

Transformation in Duboisia spp.

  • Yoshihiro Mano
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 22)

Abstract

The genus Duboisia consists of three species, Duboisia leichhardtii F. Muell, D. myoporoides R. Br., and D. hopwoodii F. Muell. Duboisia species are woody plants and the former two species produce the largest amounts of tropane alkaloids among the Solanaceae, which includes the other alkaloid-producing plants Atropa, Datura, Hyoscyamus and Scopolia. The major alkaloids present in D. leichhardtii and D. myoporoides are scopolamine and hyoscyamine, important compounds that have been used as spasmolytics and anesthetics. The third species, D. hopwoodii, produces mainly nicotine and nornicotine, both of which are nicotine alkaloids normally found in tobacco plants. Both tropane and nicotine alkaloids are synthesized mainly in the roots of these three species.

Keywords

Hairy Root Somatic Hybrid Hairy Root Culture Alkaloid Content Agrobacterium Rhizogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambros PF, Matzke AJM, Matzke MA (1986) Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5:2073–2077.PubMedGoogle Scholar
  2. Armitage P, Waiden R, Draper J (1988) Vectors for the transformation of plant cells using Agrobacterium. In: Draper J, Scott R, Armitage P, Waiden R (eds) Plant genetic transformation and gene expression, a laboratory manual. Blackwell, Oxford, pp 1–67.Google Scholar
  3. Birot AM, Bouchez D, Casse-Delbart F, Durant-Tardif M, Jouanin L, Pautot V, Robaglia C, Tepfer D, Tepfer M, Tourneur J, Vilaine F (1987) Studies and uses of the Ri plasmids of Agrobacterium rhizogenes. Plant Physiol Biochem 25:323–335.Google Scholar
  4. Byrne MC, Koplow J, David C, Tempe J, Chilton MD (1983) Structure of T-DNA in roots transformed by Agrobacterium rhizogenes. J Mol Appl Genet 2:201–209.PubMedGoogle Scholar
  5. Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone I, Costantino P (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480.PubMedCrossRefGoogle Scholar
  6. David C, Petit A, Tempe J (1988) T-DNA length variability in mannopine hairy roots: more than 50 kilobasepairs of pRi T-DNA can integrate in plant cells. Plant Cell Rep 7:92–95.CrossRefGoogle Scholar
  7. Deno H, Yamagata H, Emoto T, Yoshioka T, Yamada Y, Fujita Y (1987) Scopolamine production by root cultures of Duboisia myoporoides. II. Establishment of a hairy root culture by infection with Agrobacterium rhizogenes. J Plant Physiol 131:315–323.Google Scholar
  8. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spano L, Costantino P (1985) Localization of agropine-synthesizing function in the Tr region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7.PubMedCrossRefGoogle Scholar
  9. Dougall DK (1987) Cell cloning and the selection of high yielding strains. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants vol 4. Academic Press, San Diego, pp 117–124.Google Scholar
  10. Endo T, Yamada Y (1985) Alkaloid production in cultured roots of three species of Duboisia. Phytochemistry 24:1233–1236.CrossRefGoogle Scholar
  11. Endo T, Komiya T, Masumitsu Y, Morikawa M, Yamada Y (1987) An intergeneric hybrid cell line of Duboisia hopwoodii and Nicotiana tabacum by protoplast fusion. J Plant Physiol 129:453–459.Google Scholar
  12. Endo T, Komiya T, Mino M, Nakanishi K, Fujita S, Yamada Y (1988) Genetic diversity among sublines originating from a single somatic hybrid cell of Duboisia hopwoodii + Nicotiana tabacum. Theor Appl Genet 76:641–646.CrossRefGoogle Scholar
  13. Endo T, Hamaguchi N, Eriksson T, Yamada Y (1991) Alkaloid biosynthesis in somatic hybrids of Duboisia leichhardtii F. Muell. and Nicotiana tabacum L. Planta 183:505–510.CrossRefGoogle Scholar
  14. Flores HE, Filner P (1985) Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism in plant cell cultures. Springer, Berlin Heidelberg New York, pp 174–185.CrossRefGoogle Scholar
  15. Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114.CrossRefGoogle Scholar
  16. Hashimoto T, Yamada Y (1986) Hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81:619–625.PubMedCrossRefGoogle Scholar
  17. Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumour-inducing plasmids. J Bacteriol 157:269–276.PubMedGoogle Scholar
  18. Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102.PubMedCrossRefGoogle Scholar
  19. Jouanin L, Guerche D, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392.CrossRefGoogle Scholar
  20. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242.CrossRefGoogle Scholar
  21. Knopp E, Strauss A, Wehrli W (1988) Root induction on several Solanaceae species by Agrobacterium rhizogenes and the determination of root tropane alkaloid content. Plant Cell Rep 7:590–593.CrossRefGoogle Scholar
  22. Koukolikova-Nicola Z, Albright L, Hohn B (1987) The mechanism of T-DNA transfer from Agrobacterium tumefaciens to the plant cell. In: Hohn T, Schell J (eds) Plant DNA infectious agents. Springer, Berlin Heidelberg New York, pp 109–148.CrossRefGoogle Scholar
  23. Mano Y (1989) Variation among hairy root clones and its application. Plant Tissue Cult. Lett 6:1–9.CrossRefGoogle Scholar
  24. Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722.CrossRefGoogle Scholar
  25. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201.CrossRefGoogle Scholar
  26. Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6β-Hyroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464.PubMedGoogle Scholar
  27. Rogers SG, Klee H (1987) Pathways to plant genetic manipulation employing Agrobacterium. In: Hohn T, Schell J (eds) Plant DNA infectious agents. Springer, Berlin Heidelberg New York, pp 179–203.CrossRefGoogle Scholar
  28. Shen WH, Petit A, Guern J, Tempe J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85:3417–3421.PubMedCrossRefGoogle Scholar
  29. Shimomura K, Sauerwein M, Ishimaru K (1991) Tropane alkaloids in the adventitious and hairy root cultures of solanaceous plants. Phytochemistry 30:2275–2278.CrossRefGoogle Scholar
  30. Spena A, Schmulling T, Koncz C, Schell J (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899.PubMedGoogle Scholar
  31. Strauss A (1989) Hyoscyamus spp: In vitro culture and the production of tropane alkaloids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 7. Medicinal and aromatic plants II Springer, Berling Heidelberg New York, pp 286–314.Google Scholar
  32. Taylor BH, White FF, Nester EW, Gordon MP (1985) Transcription of Agrobacterium rhizogenes A4 T-DNA. Mol Gen Genet 201:546–553.CrossRefGoogle Scholar
  33. Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23.CrossRefGoogle Scholar
  34. Vilaine F, Charbonnier C, Casse-Delbart F (1987) Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: Transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tabacco leaf fragments. Mol Gen Genet 210:111–115.CrossRefGoogle Scholar
  35. White FF, Sinkar VP (1987) Molecular analysis of root induction by Agrobacterium rhizogenes. In: Hohn T, Schell J (eds) Plant DNA Infectious Agents. Springer, Berlin Heidelberg New York, pp 149–177.CrossRefGoogle Scholar
  36. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44.PubMedGoogle Scholar
  37. Yamada Y, Endo T (1984) Tropane alkaloid production in cultured cells of Duboisia leichhardtii. Plant Cell Rep 3:186–188.CrossRefGoogle Scholar
  38. Yamada Y, Okabe S, Hashimoto T (1990) Homogeneous hyoscyamine 6β-hydroxylase from cultured roots of Hyoscyamus niger. Proc Jpn Acad Ser B Phys Biol Sci 66:73–76.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Yoshihiro Mano
    • 1
  1. 1.Department of Biological Science and TechnologyTokai UniversityNumazu, ShizuokaJapan

Personalised recommendations