Transformation in Datura Species

  • P. Christen
  • M. F. Roberts
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 22)


One of the main reasons why there are so few commercial processes which utilize plant cell cultures on a large scale is the cost effectiveness of the maintenance and processing of sterile cultures versus yield. Poor secondary metabolite biosynthesis and culture instability have prevented commercialization of many plant culture systems. Secondary products are frequently produced in cell cultures in lower yield than in the parent plant; however, there are more than 30 examples where the yield of secondary compounds from plant cell cultures is equal to or in excess of that produced by the parent plant (Phillipson 1990). Providing selection for high-yielding cells can be made and stable cultures produced, commercial exploitation may be considered, providing that the market cost of the compound produced allows the process to be cost-effective.


Hairy Root Root Culture Hairy Root Culture Crown Gall Alkaloid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Yahya M, Evans WC (dy1975) Alkaloids of the F1 hybrid of Datura stramonium x D. discolor. J Pharm Pharmacol 27:87p (Suppl).Google Scholar
  2. Bristol ML, Evans WC, Lampard JF (1969) The alkaloids of the genus Datura, section Brugmansia. Part VI. Tree Datura drugs (Datura Candida cvs.) of the Colombian Sibundoy. J Nat Prod (Lloydia) 32:123–130.Google Scholar
  3. Christen P, Roberts MF, Phillipson JD, Evans WC (1989) High-yield production of tropane alkaloids by hairy-root cultures of a Datura Candida hybrid. Plant Cell Rep 8:75–77.CrossRefGoogle Scholar
  4. Christen P, Roberts MF, Phillipson JD, Evans WC (1990) Alkaloids of hairy root cultures of a Datura Candida hybrid. Plant Cell Rep 9:101–104.CrossRefGoogle Scholar
  5. Clare BG (1990) Agrobacterium in plant disease, biological disease control and plant genetic engineering. Sci Progr London 74:1–13.PubMedGoogle Scholar
  6. El-Dabbas SW, Evans WC (1982) Alkaloids of the genus Datura, section Brugmansia. X. Alkaloid content of Datura hybrids. Planta Med 44:184–185.PubMedCrossRefGoogle Scholar
  7. El-Imam YMA, Evans WC (1990) Alkaloids of a Datura Candida cultivar, D. aurea and various hybrids. Fitoterapia 61:148–152.Google Scholar
  8. Ellis JG, Ryder MH, Tate ME (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195:466–473.CrossRefGoogle Scholar
  9. Evans WC (1979) Tropane alkaloids of the Solanaceae. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, New York, pp 241–254.Google Scholar
  10. Evans WC (1990) Datura, a commercial source of hyoscine. Pharm J 244:651–653.Google Scholar
  11. Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64–69.CrossRefGoogle Scholar
  12. Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Withehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep. 10:111–114.CrossRefGoogle Scholar
  13. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158.PubMedCrossRefGoogle Scholar
  14. Griffin WJ (1976) Agronomic evaluation of Datura Candida — a new source of hyoscine. Econ Bot 30:361–369.CrossRefGoogle Scholar
  15. Griffin WJ (1992) Alkaloids of a Datura Candida cultivar. Phytochemistry 31:367–368.CrossRefGoogle Scholar
  16. Hashimoto T, Yamada Y (1986) Hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependant dioxygenase, in alkaloid producing root cultures. Plant Physiol 81:619–625.PubMedCrossRefGoogle Scholar
  17. Hashimoto T, Kohno J, Yamada Y (1989) 6β-Hydroxyhyoscyamine epoxidase from cultured roots of Hyoscyamus niger. Phytochemistry 28:1077–1082.CrossRefGoogle Scholar
  18. Hashimoto T, Hayashi A, Amano Y, Fohno J, Iwanari H, Usuda S, Yamada Y (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 266:4648–4653.PubMedGoogle Scholar
  19. Hay CA, Anderson LA, Roberts MF, Phillipson JD (1988) Alkaloid production by plant cell cultures. In: Mizrahi A (ed) Biotechnology in agriculture, advances in biotechnological processes, vol 9. Alan R. Riss, New York, pp 97–140.Google Scholar
  20. Hilton MG, Rhodes MJC (1990) Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Appl Microbiol Biotechnol 33:132–138.PubMedCrossRefGoogle Scholar
  21. Hooykaas PJJ (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13:327–336.PubMedCrossRefGoogle Scholar
  22. Jaziri M, Legros M, Homes J, Vanhaelen M (1988) Tropane alkaloids production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry 27:419–420.CrossRefGoogle Scholar
  23. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50:145–151.CrossRefGoogle Scholar
  24. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242.CrossRefGoogle Scholar
  25. Knopp E, Strauss A, Wehrli W (1988) Root induction on several Solanaceae species by Agrobacterium rhizogenes and the determination of root tropane alkaloid content. Plant Cell Rep 7:590–593.CrossRefGoogle Scholar
  26. Leete E (1990) Recent developments in the biosynthesis of tropane alkaloids. Planta Med 56:339–352.PubMedCrossRefGoogle Scholar
  27. Lounasmaa M (1988) The tropane alkaloids. In: Brossi A (ed) The alkaloids, vol 33. Academic Press, New York, pp 1–81.Google Scholar
  28. Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722.CrossRefGoogle Scholar
  29. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201.CrossRefGoogle Scholar
  30. Munier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12.CrossRefGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.CrossRefGoogle Scholar
  32. Nabeshima S, Mano Y, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Symbiosis 2:11–18.Google Scholar
  33. Ohkawa H, Kamada H, Sudo H, Harada H (1989) Effects of gibberellic acid on hairy root growth in Datura innoxia. J Plant Physiol 134:633–636.Google Scholar
  34. Parr AJ, Hamill JD, Payne J, Rhodes MJC, Robins RJ, Walton NJ (1988) Exploiting variation in tropane alkaloid production by solanaceous plants. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 101–107.Google Scholar
  35. Parr AJ, Payne J, Eagles J, Chapman BT, Robins RJ, Rhodes MJC (1990) Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry 29:2545–2550.CrossRefGoogle Scholar
  36. Payne J, Hamill JD, Robins RJ, Rhodes MJC (1987) Production of hyoscyamine by hairy root cultures of Datura stramonium. Planta Med 53:474–478.PubMedCrossRefGoogle Scholar
  37. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214.CrossRefGoogle Scholar
  38. Petri G, Bajaj YPS (1989) Datura spp.: In vitro regeneration and the production of tropanes. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 7. Medicinal and aromatic plants II. Springer, Berlin Heidelberg New York, pp 135–161.Google Scholar
  39. Phillipson JD (1990) Plants as sources of valuable products. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon Press, Oxford, pp 1–21.Google Scholar
  40. Rhodes MJC, Robins RJ, Hamill JD, Parr AJ, Walton NJ (1987) Secondary product formation using Agrobacterium rhizogenes-transformed hairy root culture. IAPTC Newslett 53:2–15.Google Scholar
  41. Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura Candida x D. aurea hybrid. Planta 181:414–422.CrossRefGoogle Scholar
  42. Robins RJ, Parr AJ, Bent EG, Rhodes MJC (1991a) Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites. Planta 183:185–195.CrossRefGoogle Scholar
  43. Robins RJ, Parr AJ, Walton NJ (1991b) Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. 2. On the relative contributions of L-arginine and L-ornithine to the formation of the tropane ring. Planta 183:196–201.CrossRefGoogle Scholar
  44. Robins RJ, Bent EG, Rhodes MJC (1991c) Studies on the biosynthesis of tropane alkaloids by Datura stramonium L. transformed root cultures. Planta 185:385–390.CrossRefGoogle Scholar
  45. Robins RJ, Bachmann P, Robinson T, Rhodes MJC, Yamada Y (1991d) The formation of 3α-and 3α-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases. FEBS Lett. 292:293–297.PubMedCrossRefGoogle Scholar
  46. Romeike A (1962) Weitere Versuche zur Züchtung einer scopolaminreichen Datura-Hybnde. Kulturpflanze 10:140–148.CrossRefGoogle Scholar
  47. Safford WE (1921) Synopsis of the genus Datura. J Wash Acad Sci 11:173–189.Google Scholar
  48. Scragg AH (1990) Fermentation systems for plant cells. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon Press, Oxford, pp 243–263.Google Scholar
  49. Spencer PA, Towers GHN (1988) Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27:2781–2785.CrossRefGoogle Scholar
  50. Shimomura K, Sauerwein M, Ishimaru K (1991) Tropane alkaloids in the adventitious and hairy root cultures of solanaceous plants. Phytochemistry 30:2275–2278.CrossRefGoogle Scholar
  51. Walton NJ, Robins RJ, Peerless ACJ (1990) Enzymes of N-methylputrescine biosynthesis in relation to hyoscyamine formation in transformed root cultures of Datura stramonium and Atropa belladonna. Planta 182:136–141.CrossRefGoogle Scholar
  52. Wettstein R (1895) Solanaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien. Englemann, Leipzig, IV (3b) pp 4–38.Google Scholar
  53. Witte L, Müller K, Arfmann H-A (1987) Investigation of the alkaloid pattern of Datura innoxia plants by capillary gas-liquid chromatography-mass spectrometry. Planta Med 53:192–197.PubMedCrossRefGoogle Scholar
  54. Yamada Y, Hashimoto T, Endo T, Yukimune Y, Kohno J, Hamaguchi N, Präger B (1990) Biochemistry of alkaloid production in vitro. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon Press, Oxford, pp 227–242.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Christen
    • 1
  • M. F. Roberts
    • 2
  1. 1.Dépt. de Pharmacognosie, Ecole de PharmacieUniversité de GenèveGenève 4Switzerland
  2. 2.Dept. of Pharmacognosy, The School of PharmacyUniversity of LondonLondonUK

Personalised recommendations