Advertisement

Neuroimaging and Cognitive-Biobehavioral Self-Treatment for Obsessive Compulsive Disorder: Practical and Philosophical Considerations

  • Jeffrey M. Schwartz
  • Karron M. Martin
  • Lewis R. Baxter
Conference paper
Part of the Die Reihe dupbar med communication wird / Series dupbar med communication book series (dmc)

Summary

We postulated that activity in the caudate nucleus plays a key role in the brain system that mediates the symptomatic expression of obsessive-compulsive disorder (OCD). If this is so, successful treatment of OCD by any method might be accompanied by changes in caudate function. To test this, we studied regional brain glucose metabolic rates in OCD patients before and after 10 weeks of treatment with either fluoxetine or a specific behavior therapy, cognitive-biobehavioral self-treatment.

There were nine closely matched subjects in each group. For each treatment, responders (Yale-Brown Obsessive-Compulsive Scale — Y-BOCS) showed a significant (p < 0.01) decrease in normalized right caudate metabolic rates. Non-responders did not show this change; responders and non-responders differed significantly (p < 0.05). Of 24 brain structures, only the right caudate metabolic rate changed significantly with behavior therapy; the right anterior cingulate gyms metabolic rate also decreased (p = 0.03) with drug therapy.

Differences were found between drug and behaviour therapy as to which brain structures correlated with clinical changes on the Y-BOCS. Behavior therapy subjects showed a significant correlation (p = 0.03) between their change on the Y-BOCS and left anterior cingulate gyrus metabolic rate change after treatment (tau = −0.62). Drug therapy subjects showed a correlation (p < 0.05) between change on the Y-BOCS and right caudate metabolic rate change.

OCD responds to both drug therapy and behavioral therapy. PET studies before and after each treatment may be a powerful tool to dissect the neuroanatomy of symptom mediation and treatment response. These data also provide support for a theory of mind-brain interaction.

Neuroimaging und kognitiv, biobehaviorale Selbstbehandlung bei der Zwangsstörung: praktische und philosophische Betrachtungen

Zusammenfassung

Wir haben postuliert, daß die Aktivität im N. caudatus eine Schlüsselrolle in dem Gehirnsystem spielt, das die Symptomatik von Zwangsstörungen (OCD) auslöst. Wenn das so ist, dann müßte die erfolgreiche Behandlung von OCD unabhängig von der jeweiligen Methode durch Veränderungen der Funktion des N. caudatus begleitet werden. Um das zu prüfen, haben wir die Menge der regionalen Gehirngluko-semetaboliten bei OCD-Patienten vor und 10 Wochen nach der Behandlung mit Fluoxetin oder einer spezifischen Verhaltenstherapie, der kognitiv-verhaltenstherapeutischen Selbstbehandlung gemessen.

In jeder Gruppe waren 9 sehr weitgehend übereinstimmende Patienten; bei jeder Behandlung zeigten die Responder (Y-BOCS) eine signifikante (p < 0,01) Abnahme der normalisierten Menge der Metaboliten im rechten N. caudatus. Non-Responder zeigten diese Veränderung nicht; Responder und Non-Responder unterschieden sich signifikant (p < 0,05). In 24 Gehirnstrukturen veränderte sich die Menge der Metaboliten im rechten N. caudatus nur durch Verhaltenstherapie signifikant; die Metabolitenmenge im rechten vorderen Gyrus cinguli sank auch bei Arzneimitteltherapie (p = 0,03).

Unterschiede zwischen Arzneimittel- und Verhaltenstherapie wurden auch im Hinblick darauf gesehen, welche Veränderungen von Gehirnstrukturen mit klinischen Veränderungen auf der Y-BOCS korrelierten. Patienten, die mit Verhaltenstherapie behandelt wurden, zeigten eine signifikante Korrelation (p = 0,03) zwischen den Veränderungen auf der Y-BOCS und der Metabolitenrate im linken vorderen Gyrus cinguli (tau = −0,62). Patienten, die mit Arzneimitteltherapie behandelt wurden, zeigten eine Korrelation (p < 0,05) zwischen Veränderungen auf der Y-BOCS und der Metabolitenrate im rechten N. caudatus.

Die Zwangsstörung reagiert sowohl auf Arzneimittel als auch auf Verhaltenstherapie. PET-Untersuchungen vor und nach jeder Behandlung können ein wirksames Instrument sein, um die Neuroanatomie der Symptomauslösung und der Behandlungserfolge aufzuklären. Diese Daten können auch dazu beitragen, eine Theorie zu Interaktionen von Geist und Gehirn aufzustellen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow DH (1990) Long term outcome of patients with panic disorder treated with cognitive behavioral therapy. J Clin Psychiatry 51 Suppl A: 17–23PubMedGoogle Scholar
  2. Baxter LR, Phelps ME, Mazziotta JC et al. (1987) Local cerebral metabolic rates in obsessive-compulsive disorder: a comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44:211–218PubMedCrossRefGoogle Scholar
  3. Baxter LR, Schwartz JM, Mazziotta JC et al. (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145:1560–1563PubMedGoogle Scholar
  4. Baxter LR, Schwartz JM, Guze BH et al. (1990) Neuroimaging in obsessive-compulsive disorder: seeking the mediating neuroanatomy. In: Jenike MA, Baer L, Minichiello WE (eds) Obsessive-compulsive disorders: theory and management, 2nd edn. Year Book Medical Publishers, Chicago, pp 167–188Google Scholar
  5. Baxter LR, Schwartz JM, Guze BH (1991) Brain imaging: toward a neuroanatomy of OCD. In: Zohar J, Insel TR, Rasmussen SA (eds) The psychobiology of obsessive-compulsive disorder. Springer, Berlin Heidelberg New York, pp 101–125Google Scholar
  6. Baxter LR, Schwartz JM, Bergman et al. (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry (in press)Google Scholar
  7. Churchland PS (1986) Neurophilosophy: toward a unified science of the mind-brain. MIT Press, CambridgeGoogle Scholar
  8. Cummings JL, Frankel M (1986) Gilles de la Tourette’s syndrome and the neurological basis of obsessions and compulsions. Biol Psychiatry 20:1117–1126CrossRefGoogle Scholar
  9. Eccles JC (1989) Evolution of the brain: creation of the self. Routledge, New YorkGoogle Scholar
  10. Emmelkamp PMG, van der Helm M, van Zanten BL et al. (1980) Treatment of obsessive-compulsive patients: the contribution of self-instructional training to the effectiveness of exposure. Behav Res Ther 18:61–66PubMedCrossRefGoogle Scholar
  11. Foa EB, Steketee GS, Ozarow BJ (1985) Behavior therapy with obsessive-compulsives: from theory to treatment. In: Mavissakalian M, Turner SM, Michelson L (eds) Obsessive-compulsive disorder: psychological and pharmacological treatment. Plenum, New York, pp 49–129Google Scholar
  12. Freeman A, Simon KM, Beutler LE et al. (eds) (1989) Comprehensive handbook of cognitive therapy. Plenum, New YorkGoogle Scholar
  13. Goldman AI (1986) Epistemology and cognition. Harvard University Press, CambridgeGoogle Scholar
  14. Goodman WK, Price LH, Rasmussen SA et al. (1989a) The Yale-Brown obsessive compulsive scale: II: Validity. Arch Gen Psychiatry 46:1012–1016CrossRefGoogle Scholar
  15. Goodman WK, Price LH, Rasmussen SA et al. (1989b) The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry 46:1006–1011CrossRefGoogle Scholar
  16. Goodman WK, Price LH, Rasmussen SA, et al. (1989c) Efficacy of fluvoxamine in obsessive-compulsive disorder: a double-blind comparison with placebo. Arch Gen Psychiatry 46:36–44CrossRefGoogle Scholar
  17. Hand I (1988) Obsessive-compulsive patients and their families. In: Faloon IRH (ed) Handbook of behavioral family therapy. Guilford, New York, pp 231–256Google Scholar
  18. Honderich T (1990) Mind and brain. Oxford University Press, New York (A theory of determinism, vol 1)CrossRefGoogle Scholar
  19. Insel TR (1988) Obsessive-compulsive disorder: a neuroethological perspective. Psychopharmacol Bull 24:365–369PubMedGoogle Scholar
  20. Liebowitz MR, Hollander E, Schneier F et al. (1989) Fluoxetine treatment of obsessive-compulsive disorder: an open clinical trial. J Clin Psychopharmacol 9:423–427PubMedCrossRefGoogle Scholar
  21. Macfie AL (1967) The individual in society: papers on Adam Smith. Allen and Unwin, LondonGoogle Scholar
  22. MacLean PD (1986) Culminating developments in the evolution of the limbic system: the thalamocingulate division. In: Doane BK, Livingston KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 1–28Google Scholar
  23. Marks IM (1987) Fears, phobias, and rituals. Oxford University Press, New YorkGoogle Scholar
  24. Marks IM, Lelliott P, Basoglu M et al. (1988) Clomipramine, self-exposure and therapist-aided exposure for obsessive-compulsive rituals. Br J Psychiatry 152:522–534PubMedCrossRefGoogle Scholar
  25. Menger C (1871) Principles of economics. Translated by Dingwall J, Hoselitz BF (1976) New York University Press, New YorkGoogle Scholar
  26. Modell JG, Mountz JM, Curtis GC et al. (1989) Neurophysiological dysfunction in the basal ganglia/limbic striatal and thalamocortical circuits as a pathogenic mechanism of obsessive-compulsive disorder. J Neuropsychiatry 1:27–36Google Scholar
  27. Nagel E (1961) The structure of science: problems in the logic of scientific explanation. Harcourt, Brace and World, New YorkGoogle Scholar
  28. Nauta WJH (1986) Circuitous connections linking cerebral cortex, limbic system, and corpus striatum. In: Doane BK, Livingstone KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 43–54Google Scholar
  29. Nauta WJH (1989) Reciprocal links of the corpus striatum with the cerebral cortex and limbic system: a common substrate for movement and thought? In: Mueller J (ed) Neurology and psychiatry: a meeting of minds. Karger, New York, pp 43–63Google Scholar
  30. Pandya DN, Van Hoesen GW, Mesulam MM (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330PubMedCrossRefGoogle Scholar
  31. Pato MT, Zohar-Kadouch R, Zohar J et al. (1988) Return of symptoms after discontinuation of clomipramine in patients with obsessive-compulsive disorder. Am J Psychiatry 145:1521–1525PubMedGoogle Scholar
  32. Penfield W (1975) The mystery of the mind: a critical study of consciousness and the human brain. Princeton University Press, PrincetonGoogle Scholar
  33. Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696PubMedCrossRefGoogle Scholar
  34. Popper KR, Eccles JC (1977) The self and its brain. Springer Berlin Heidelberg New YorkGoogle Scholar
  35. Raphael DD (1947) The moral sense. Oxford University Press, LondonGoogle Scholar
  36. Raphael DD (1975) The impartial spectator. In: Skinner AS, Wilson T (eds) Essays on Adam Smith. Oxford University Press, London, pp 83–99Google Scholar
  37. Rapoport JL (1989a) The boy who couldn’t stop washing: the experience and treatment of obsessive-compulsive disorder. Dutton, New YorkGoogle Scholar
  38. Rapoport JL (1989b) The biology of obsessions and compulsions. Scientific American 260 3:82–89CrossRefGoogle Scholar
  39. Rapoport JL (1991) Recent advances in obsessive-compulsive disorder. Neuropsychopharmacology 5:1–10PubMedGoogle Scholar
  40. Reed GF (1985) Obsessional experience and compulsive behavior: a cognitive-structural approach. Academic, Orlando, pp 209–215Google Scholar
  41. Rendall J (1979) The origins of the Scottish Enlightenment. Macmillan, LondonGoogle Scholar
  42. Rush AJ, Beck AT (section eds) (1988) Cognitive therapy. In: Frances AJ, Hales RE (eds) Review of psychiatry, vol 7. American Psychiatric Press, Washington, pp 530–669Google Scholar
  43. Salkovskis PM, Clark DM (1986) Cognitive and physiological processes in the maintenance and treatment of panic attacks. In: Hand I, Wittchen HU (eds) Panic and phobias: empirical evidence of theoretical models and longterm effects of behavioral treatments. Springer, Berlin Heidelberg New York, pp 90–103Google Scholar
  44. Schneider JS (1987) Functions of the basal ganglia: an overview. In: Schneider JS, Lidsky TI (eds) Basal ganglia and behavior: sensory aspects of motor functioning. Huber, Lewiston, pp 1–8Google Scholar
  45. Smith A (1790) The theory of moral sentiments, or an essay towards an analysis of the principles by which men naturally judge concerning the conduct and character, first of their neighbours, and afterwards of themselves. (Raphael DD, Macfie AL (eds) (1976) 6th edn. Oxford University Press, Oxford)Google Scholar
  46. Stuss DT, Benson DF (1986) The frontal lobes. Raven, New York, p 243Google Scholar
  47. Swedo SE, Rapoport JL (1991) The neurobiology of obsessive-compulsive disorder in childhood. In: Jenike M, Asberg M (eds) Understanding obsessive-compulsive disorder (OCD). Hogrefe and Huber, Toronto, pp 28–39Google Scholar
  48. Swedo SE, Schapiro MB, Grady CL et al. (1989) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 46:518–523PubMedCrossRefGoogle Scholar
  49. Villabianca JR, Olmstead CE (1982) The striatum: a fine tuner of the brain. Acta Neurobiol Exp (Warsz) 42:227–299Google Scholar
  50. von Mises L (1957) Theory and history: an interpretation of social and economic evolution. Yale University Press, New Haven, pp 1–2, 264–284Google Scholar
  51. von Mises L (1966) Human action: a treatise on economics, 3rd edn. Contemporary Books. ChicagoGoogle Scholar
  52. von Mises L (1978) The ultimate foundation of economic science: an essay on method, 2nd edn. Andrews and McMeel, MissionGoogle Scholar
  53. Wise SP, Rapoport JL (1989) Obsessive-compulsive disorder: a basal ganglia disease? In: Rapoport JL (ed) Obsessive-compulsive disorder in children and adolescents. American Psychiatric Press, Washington, pp 327–346Google Scholar
  54. Zohar J, Insel TR (1987) Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biol Psychiatry 22:667–687PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jeffrey M. Schwartz
  • Karron M. Martin
  • Lewis R. Baxter

There are no affiliations available

Personalised recommendations