Skip to main content

Recent Developments in Stream Ecology and Their Relevance to Aquatic Mycology

  • Chapter
The Ecology of Aquatic Hyphomycetes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 94))

Abstract

If one follows a stream from its source to the sea, many of its physical and geomorphological properties, such as current speed, temperature, depth, etc., change in a predictable manner (Hynes 1970). All these factors influence occurrence and abundance of the various stream organisms. It comes as no surprise therefore that running waters display a longitudinal biological zonation. Fish biologists were the first to use this phenomenon to subdivide the sections of a watercourse into four zones named after their dominant fish. This empirical approach was developed in the 1950s in Belgium and northern Germany and proved useful for fishery biologists in nearby areas. However, presence or absence of some of these species in a given stream or river often depends on historical accidents and, with increasing distance from the region where the concept was first proposed, the original four species were replaced by others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aimer RD, Segedin BP (1985) Some aquatic hyphomycetes from New Zealand streams. N Z J Bot 23: 273–299

    Google Scholar 

  • Bandoni RJ (1981) Aquatic hyphomycetes from terrestrial litter. In: Wicklow DT, Carroll GC (eds) The Fungal Community. Marcel Dekker, New York, pp 693–708

    Google Scholar 

  • Bandoni RJ, Koske RE (1974) Monolayers and microbial dispersal. Science 183: 1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Bärlocher F (1981) Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mycol Soc 76: 14–19

    Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60: 1487–1494

    Article  Google Scholar 

  • Bärlocher F, Murdoch JH (1989) Hyporheic biofilms — a potential food source for interstitial animals. Hydrobiologia 184: 61–67

    Article  Google Scholar 

  • Bell DT, Sipp SK (1975) The litter stratum in the streamside forest ecosystem. Oikos 26: 391–397

    Article  Google Scholar 

  • Bird GA, Kaushik NK (1981) Coarse particulate organic matter in streams. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum, New York, pp 41–68

    Google Scholar 

  • Blanchard DC, Parker BC (1977) The freshwater to air transfer of microorganisms and organic matter. In: Cairns JC (ed) Aquatic Microbial Communities. Garland, New York, pp 625–658

    Google Scholar 

  • Botosaneanu L (1979) Quinze annĂ©es de recherches sur la zonation des cours d’eau: 1963–1978. Bijdr Dierk 49: 109–134

    Google Scholar 

  • Byrne PJ, Jones EBG (1975) Effects of salinity on the reproduction of terrestrial and marine fungi. Trans Br Mycol Soc 65: 185–200

    Article  Google Scholar 

  • Chamier A-C (1985) Cell-wall-degrading enzymes of aquatic hyphomycetes: a review. Bot J Linn Soc 91: 67–81

    Article  Google Scholar 

  • Chauvet E (1989) Production, flux et dĂ©composition des litières en milieu alluvial. Dynamique et rĂ´le des hyphomycètes aquatiques dans le processus de dĂ©composition. Thesis, Paul Sabatier University, Toulouse

    Google Scholar 

  • Covich AP (1988) Geographical and historical comparisons of neotropical streams: biotic diversity and detrital processing in highly variable habitats. J N Am Benthol Soc 7: 361–386

    Article  Google Scholar 

  • Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18: 183–206

    Article  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. BioScience 24:631–641

    Article  Google Scholar 

  • Cummins KW, Minshall GW, Sedell JR, Cushing CE, Petersen RC (1984) Stream ecosystem theory. Verh Int Ver Limnol 22: 1818–1827

    Google Scholar 

  • Dance KW (1981) Seasonal aspects of transport of organic and inorganic matter in streams. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum, New York, pp 69–95

    Google Scholar 

  • Deighton FC, Mulder JL (1977) Mycocentrospora acerinaas a human pathogen. Trans Br Mycol Soc 69:326–327

    Article  Google Scholar 

  • Field JI, Webster J (1983) Anaerobic survival of aquatic fungi. Trans Br Mycol Soc 81: 365–369

    Article  Google Scholar 

  • Fisher PJ, Petrini 0 (1989) Two aquatic hyphomycetes as endophytes in Alnus glutinosa roots. Mycol Res 92: 367–368

    Google Scholar 

  • Fisher J, Webster J, Petrini 0 (1991) Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res 95: 543–547

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gönczöl J (1975) Ecological observations on the aquatic hyphomycetes of Hungary, I Acta Bot Acad Sci Hung 21: 243–264

    Google Scholar 

  • Gönczöl J (1976) Ecological observations on the aquatic hyphomycetes of Hungary, II Acta Bot Acad Sci Hung 22: 51–60

    Google Scholar 

  • Gönczöl J (1989) Longitudinal distribution patterns of aquatic hyphomycetes in a mountain stream in Hungary. Experiments with leaf packs. Nova Hedwigia 48: 391–404

    Google Scholar 

  • Gönczöl J, RĂ©vay A (1983). Observations on the hyphomycetes inhabiting forest litter of Hungary. Acta Bot Acad Sci Hung 29: 107–125

    Google Scholar 

  • Goos RD (1978) Occurrence of Triscelophorus monosporus in upland stream sites on Oahu, Hawaii. Mycologia 70: 188–189

    Article  Google Scholar 

  • Hedger J (1990) Fungi in the tropical forest canopy. Mycologist 4: 200–202

    Article  Google Scholar 

  • Howe HF, Smallwood J (1982). Ecology of seed dispersal. Annu Rev Ecol Syst 13: 201–228

    Article  Google Scholar 

  • Hynes HBN (1963) Imported organic matter and secondary productivity in streams. Proc XVI Int Congr Zool 4: 324–329

    Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto Hynes HBN (1975) The stream and its valley. Verh Int Ver Limnol 19: 1–15

    Google Scholar 

  • Hynes HBN (1983) Groundwater and stream ecology. Hydrobiologia 100: 93–99

    Article  Google Scholar 

  • Illies J (1961) Versuch einer allgemeinen biozönotischen Gliederung der Fliessgewässer. Int Rev Ges Hydrobiol 46: 205–213

    Article  Google Scholar 

  • Illies J, Botosaneanu L (1963) Problèmes et mĂ©thodes de la classification et de la zonation Ă©cologique des eaux courantes, considĂ©rĂ©es surtout du point de vue faunistique. Mitt Soc Int Limnol 12: 1–57

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and waterborne hyphomycetes ( Fungi Imperfecti) with notes on their biology. Freshwater Biol Assoc Publ No 30

    Google Scholar 

  • Ingold CT (1976) The morphology and biology of freshwater fungi excluding phycomycetes. In: Jones EBG (ed) Recent Advances in Aquatic Mycology. Marcel Dekker, New York, pp 335–357

    Google Scholar 

  • Igbal SH, Webster J (1973) The trapping of aquatic hyphomycete spora by air bubbles. Trans Br Mycol Soc 60: 37–48

    Article  Google Scholar 

  • Jones EBG, Byrne PJ (1976) Physiology of the higher marine fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Paul Elek, London, pp 135–175

    Google Scholar 

  • Jones EBG, Oliver AC (1964) Occurrence of aquatic hyphomycetes on wood submerged in fresh and brackish water. Trans Br Mycol Soc 47: 45–48

    Article  Google Scholar 

  • Kirk PW (1969) Aquatic hyphomycetes on wood in an estuary. Mycologia 61: 177–181

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine Mycology. Academic Press, New York

    Google Scholar 

  • Kuehn K, Koehn R (1988) A mycofloral survey of an artesian community within the Edwards Aquifer of central Texas. Mycologia 80: 646–652

    Article  Google Scholar 

  • Likens GE (1984) Beyond the shoreline: a watershed-ecosystem approach. Verh Int Ver Limnol 22: 1–22

    CAS  Google Scholar 

  • Lock MA (1981) River epilithon — a light and organic energy transducer. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum Press, New York, pp 3–40

    Google Scholar 

  • Lodge DJ, Asbury CE (1988) Basidiomycetes reduce export of organic matter from forest slopes. Mycologia 80: 888–890

    Article  Google Scholar 

  • Madsen BL (1972) Detritus on stones in small streams. Mem Ist Ital Idrobiol 29:385–403 Malmquist B, Nilsson LM, Svensson BS (1978) Dynamics of detritus in a small stream in southern Sweden and its influence on the distribution of the bottom animal communities. Oikos 31: 3–16

    Google Scholar 

  • Matthews WJ (1988) North American prairie streams as systems for ecological study. J N Am Benthol Soc 7: 387–409

    Article  Google Scholar 

  • Mayack DT, Thorp JH, Cothran M (1989) Effects of burial and floodplain retention on stream processing of allochthonous litter. Oikos 54: 378–388

    Article  Google Scholar 

  • Metzler GM, Smock LA (1990) Storage and dynamics of subsurface detritus in a sand-bottomed stream. Can J Fish Aquat Sci 47: 588–594

    Article  Google Scholar 

  • Meyer JL (1990) A blackwater perspective on riverine ecosystems. BioScience 40: 643–651

    Article  Google Scholar 

  • Meyer JL, McDowell WH, Bott TL, Elwood JW, Ishizaki C, Melack JM, Pecharsky BL, Peterson BJ, Rublee PA (1988) Elemental dynamics in streams. J N Am Benthol Soc 7: 410–432

    Article  Google Scholar 

  • Michaelides J, Kendrick B (1978) An investigation of factors retarding colonization of conifer needles by amphibious hyphomycetes in streams. Mycologia 70: 419–430

    Article  Google Scholar 

  • Minshall GW (1988) Stream ecosystem theory: a global perspective. J N Am Benthol Soc 7: 263–288

    Article  Google Scholar 

  • Minshall GW, Petersen RC, Cummins KW, Bott TL, Sedell JR, Cushing CE, Vannote RL (1983) Interbiome comparison of stream ecosystem dynamics. Ecol Monogr 53: 1–25

    Article  Google Scholar 

  • Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42: 1045–1055

    Article  Google Scholar 

  • Moser JC, Perry TJ, Solheim H (1989). Ascospores hyperphoretic on mites associated with Ips typographus. Mycol Res 93: 513–517

    Article  Google Scholar 

  • Mulholland PJ, Newbold JD, Elwood JW, Webster JR (1985) Phosphorus spiralling in a woodland stream: seasonal variations. Ecology 66: 1012–1023

    Article  Google Scholar 

  • MĂĽller E, Loeffler W (1982) Mykologie, 4th edn. Thieme Verlag, Stuttgart

    Google Scholar 

  • MĂĽller-Haeckel A (1982) Organic material leaving the river Ă„ngerân and its fate in the estuary. In: MĂĽller K (ed) Coastal research in the Gulf of Bothnia, Junk, The Hague, pp 81–104

    Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1976) Konidienproduktion und -kolonisation von SĂĽsswasser-Hyphomyzeten im Kaltisjokk ( Lappland ). Bot Not 129: 405–409

    Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1979a) Periodicity of aquatic hyphomycetes in the subarctic. Trans Br Mycol Soc 73: 109–116

    Article  Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1979b) Freshwater hyphomycetes in brackish and sea water. Bot Mar 22: 421–424

    Article  Google Scholar 

  • MĂĽller-Haeckel A, Marvanovâ L (1982) Hyphomycetes in the mouth of the river Angerân and their fate in the estuary. In: MĂĽller K (ed) Coastal Research in the Gulf of Bothnia. Junk Publishers, The Hague, 105–114

    Google Scholar 

  • Naiman RJ, DĂ©camps H, Pastor J, Johnston CA (1988) The potential importance of boundaries to fluvial ecosystems. J N Am Benthol Soc 7: 289–306

    Article  Google Scholar 

  • Newell SY (1976) Mangrove fungi: The succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings. In: Jones EBG (ed) Recent advances in aquatic mycology. Paul Elek, London, pp 51–91

    Google Scholar 

  • Nilsson S (1964) Freshwater hyphomycetes. Symb Bot Ups 18: 1–130

    Google Scholar 

  • Park D (1974) Aquatic hyphomycetes in non-aquatic habitats. Trans Br Mycol Soc 63: 183–187

    Article  Google Scholar 

  • Park D (1982) Varicosporium as a competitive soil saprophyte. Trans Br Mycol Soc 78:33–41

    Article  Google Scholar 

  • Pennak RW (1971) Toward a classification of lotic habitats. Hydrobiologia 38:321–334 Pringle CM, Naiman RJ, Bretschko G, Karr JR, Oswood MW, Webster JR, Welcomme

    Google Scholar 

  • RL, Winterbourne MJ (1988) Patch dynamics in lotic systems: the stream as a mosaic. J N Am Benthol Soc 7: 503–524

    Google Scholar 

  • Prochazak K, Stewart BA, Davies BR (1991) Leaf litter retention and its implications for shredder distribution in two headwater streams. Arch Hydrobiol 120: 315–325

    Google Scholar 

  • Pugh GJF (1974) Fungi in intertidal regions. Veröff Inst Meeresforsch Bremerhaven Suppl 5: 403–418

    Google Scholar 

  • Ranzoni FV (1953) The aquatic hyphomycetes of California. Farlowia 4: 353–398

    Google Scholar 

  • Ranzoni FW (1979) Aquatic hyphomycetes from Hawaii. Mycologia 71: 786–795

    Article  Google Scholar 

  • Reynolds CS, White ML, Clarke RT, Marker AF (1990) Suspension and settlement particles in flowing water: comparison of the effects of varying water depth and velocity in circulating channels. Freshwater Biol 24: 23–34

    Article  Google Scholar 

  • Rossi L, Vitagliano-Tadini G (1978) Role of adult faeces in the nutrition of Asellus aquaticus ( Isopoda ). Oikos 30: 109–113

    Article  Google Scholar 

  • Rounick JS, Winterbourn MJ (1983) The formation, structure and utilization of stone surface layers in two New Zealand streams. Freshwater Biol 13: 57–72

    Article  CAS  Google Scholar 

  • Ryder Gl, Scott D (1988) The applicability of the River Continuum Concept to New Zealand streams. Verh Int Ver Limnol 23: 1441–1445

    Google Scholar 

  • Sanders PF, Webster J (1978) Survival of aquatic hyphomycetes in terrestrial situations. Trans Br Mycol Soc 71: 231–237

    Article  Google Scholar 

  • Sanders PF, Webster J (1980) Sporulation responses of some `aquatic’ hyphomycetes in flowing water. Trans Br Mycol Soc 74: 601–605

    Article  Google Scholar 

  • Sedell JR, Froggatt JL (1984) Importance of streamside forests to large rivers: the isolation of the Williamette River, Oregon, USA, from its floodplain by snagging and streamside forest removal. Verh Int Ver Limnol 22: 1828–1843

    Google Scholar 

  • Sedell JR, Naiman RJ, Cummins KW, Minshall GW, Vannote RL (1978) Transport of particulate organic material in streams as a function of physical processes. Verh Int Ver Limnol 20: 1366–1375

    Google Scholar 

  • Shearer CA (1972) Fungi of the Chesapeake Bay and its tributaries. III. The distribution of wood-inhabiting ascomycetes and fungi imperfecti of the Patuxent River. Am J Bot 59: 961–969

    Article  Google Scholar 

  • Shearer CA, Crane JL (1971) Fungi of the Chesapeake Bay and its tributaries. I. Patuxent River. Mycologia 63: 237–260

    Article  Google Scholar 

  • Shearer CA, Webster J (1985) Aquatic hyphomycete communities in the River Teign. I Longitudinal distribution patterns. Trans Br Mycol Soc 84: 489–501

    Article  Google Scholar 

  • Singh N, Musa TM (1977) Terrestrial occurrence and the effect of temperature on growth, sporulation and spore germination, of some tropical aquatic hyphomycetes. Trans Br Mycol Soc 68: 103–106

    Article  Google Scholar 

  • Speaker RW, Luchessa KJ, Franklin JF, Gregory SV (1988) The use of plastic strips to measure leaf retention by riparian vegetation in a coastal Oregon stream. Am Midl Nat 120: 22–31

    Article  Google Scholar 

  • Sridhar KR, Kaveriappa KM (1987) Occurrence and survival of aquatic hyphomycetes under terrestrial conditions. Trans Br Mycol Soc 89: 606–609

    Article  Google Scholar 

  • Sridhar KR, Kaveriappa KM (1988a) Occurrence and survival of aquatic hyphomycetes in brackish and sea water. Arch Hydrobiol 113: 153–160

    Google Scholar 

  • Sridhar KR, Kaveriappa KM (1988b) Survival of water-borne fungi imperfecti under non-aquatic conditions. Proc Indian Natl Sci Acad B54: 295–297

    Google Scholar 

  • Statzner B, Higler B (1985) Questions and comments on the River Continuum Concept. Can J Fish Aquat Sci 42: 1038–1044

    Article  Google Scholar 

  • Statzner B, Higler B (1986) Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biol 16: 127–139

    Article  Google Scholar 

  • Suberkropp K (1984) Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Trans Br Mycol Soc 82: 53–62

    Article  Google Scholar 

  • Suberkropp K (1991) Aquatic hyphomycete communities. In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York (in press)

    Google Scholar 

  • Suberkropp K, Klug MJ (1980) The maceration of deciduous leaf litter by aquatic hyphomycetes. Can J Bot 58: 1025–1031

    Article  CAS  Google Scholar 

  • Suberkropp K, Michelis A, Lorch H-J, Ottow JCG (1988) Effect of sewage treatment plant effluents on the distribution of aquatic hyphomycetes in the River Erms, Schwäbische Alb, F.R.G. Aquat Bot 32: 141–153

    Article  Google Scholar 

  • Thakur SB (1977) Survival of aquatic hyphomycetes under dry conditions. Mycologia 69: 843–845

    Article  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1991a) Changes in concentration of aquatic hyphomycete spores in Lees Creek, ACT, Australia. Mycol Res 95: 178–183

    Article  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1991b) A dynamic model of fungal spora in a freshwater stream. Mycol Res 95: 184–188

    Article  Google Scholar 

  • Thornton ML (1970) Transport of soil-dwelling aquatic Phycomycetes by earthworms. Trans Br Mycol Soc 55: 391–397

    Article  Google Scholar 

  • Thornton ML (1971) Potential for long-range dispersal of aquatic Phycomycetes by internal transport in birds. Trans Br Mycol Soc 57: 49–59

    Article  Google Scholar 

  • Townsend CR (1989) The patch dynamics concept of stream community ecology. J N Am Benthol Soc 8: 36–50

    Article  Google Scholar 

  • Townsend CR, Hildrew AG (1984) Longitudinal pattern in detritivore communities of acid streams: a consideration of alternative hypotheses. Verh Int Ver Limnol 22: 1953–1958

    Google Scholar 

  • Trepl L (1987) Geschichte der Oekologie. Athenäum TaschenbĂĽcher, Frankfurt

    Google Scholar 

  • Triska FJ (1984) Role of wood debris in modifying channel geomorphology and riparian areas of a large lowland river under pristine conditions: a historical case study. Verh Int Ver Limnol 22: 1876–1892

    Google Scholar 

  • Tudge C (1989) The rise and fall of Homo sapiens sapiens. Trans R Soc Lond B 325: 479–488

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The River Continuum Concept. Can J Fish Agnat Sci 37: 130–137

    Article  Google Scholar 

  • Vogel S (1981) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Waid JS (1954) Occurrence of aquatic hyphomycetes upon the root surfaces of beech grown in woodland soils. Trans Br Mycol Soc 37: 420–421

    Article  Google Scholar 

  • Wall CJ, Lewis GB (1978) Survival of Mycocentrospora acerina conidia. Trans Br Mycol Soc 70: 157–160

    Article  Google Scholar 

  • Wall CJ, Lewis BG (1980a) Infection of carrot plants by Mycocentrospora acerina. Trans Br Mycol Soc 74: 587–593

    Article  Google Scholar 

  • Wall CJ, Lewis BG (1980b) Survival of chlamydospores and subsequent development of Mycocentrospora acerina in soil. Trans Br Mycol Soc 75: 207–211

    Article  Google Scholar 

  • Wallace JB, Webster JR, Cuffney TF (1982) Stream detritus dynamics: regulation by invertebrate consumers. Oecologia 53: 197–200

    Article  Google Scholar 

  • Ward GM, Cummins KW (1979) Effects of food quality on growth of a stream detritivore, Paratendipes albimanus (Meigen) ( Diptera: Chironomidae). Ecology 60: 57–64

    Article  Google Scholar 

  • Webster J (1975) Further studies on sporulation of aquatic hyphomycetes in relation to aeration. Trans Br Mycol Soc 64: 19–127

    Google Scholar 

  • Webster J (1977) Seasonal observations on aquatic hyphomycetes on oak leaves on the ground. Trans Br Mycol Soc 68: 108–111

    Article  Google Scholar 

  • Webster J, Descals E (1979) The teleomorphs of water-borne Hyphomycetes from fresh water. In: Kendrick B (ed) The Whole Fungus, vol 2. National Museums of Natural Sciences, Ottawa, Canada, pp 419–451

    Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution and ecology of conidial fungi in freshwater habitats. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol 1. Acad Press, New York, pp 295–355

    Google Scholar 

  • Webster J, Moran ST, Davey RA (1976) Growth and sporulation of Tricladium chaetocladium and Lunulospora curvala in relation to temperature. Trans Br Mycol Soc 67: 491–495

    Article  Google Scholar 

  • Webster JR (1983) The role of benthic macroinvertebrates in detritus dynamics of streams: a computer simulation. Ecol Monogr 53: 383–404

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17: 567–594

    Article  Google Scholar 

  • Williams DD (1981). Migrations and distributions of stream benthos. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum, New York, pp 155–207

    Google Scholar 

  • Williams DD (1989) Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwater Biol 22: 189–208

    Article  CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge Winterbourn MJ (1986) Recent advances in our understanding of stream ecosystems. In: Polunin N (ed) Ecosystem theory and application. Wiley, New York, pp 240–268

    Google Scholar 

  • Winterbourn MJ, Rounick JS, Cowie B (1981) Are New Zealand stream ecosystems really different? N Z J Mar Freshwater Res 15: 321–328

    Article  Google Scholar 

  • Young SA, Kovalek WP, Del Signore KA (1978) Distances travelled by autumn-shed leaves introduced into a woodland stream. Am Midl Nat 100: 217–222

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bärlocher, F. (1992). Recent Developments in Stream Ecology and Their Relevance to Aquatic Mycology. In: Bärlocher, F. (eds) The Ecology of Aquatic Hyphomycetes. Ecological Studies, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76855-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76855-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76857-6

  • Online ISBN: 978-3-642-76855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics