Skip to main content

Regulation of Gene Expression by Iron

  • Conference paper
The Molecular Basis of Bacterial Metabolism

Abstract

Iron serves as a central regulatory substance which controls the expression of almost 40 genes in Escherichia coli. Why is this so? Iron, with the exception of some lactobacilli, is required by all organisms in rather high concentrations (between 105 and 106 ions per microbial cell) [1] since it is contained in the reaction centers of many redox enzymes in the cytoplasm and the cytoplasmic membrane. Depending on the protein environment, Fe2+ /Fe3+ spans the unusually large standard redox potential range from +300 to -500 mV, which makes it an ideal redox cofactor. Despite the great abundance of iron in nature, iron supply poses great problems for organisms growing under aerobic conditions. Fe3+ occurs at pH 7 as a hydroxyaquo polymer with a free Fe3+ concentration in the order of 10-18 M (103 ions per ml). This is certainly not enough to supply 109 bacteria per ml with 1014 Fe3+ ions per generation. To fulfill their iron demand, bacteria developed elaborate iron supply systems which include iron complexing substances, called siderophores, and Fe3+-siderophore transport systems. Synthesis of the siderophores and the transport systems are subject to iron control. The enzymes and transport proteins involved are synthesized under conditions of iron starvation. In addition, a number of bacterial toxins are formed at low iron supply. As far as these toxins damage eukaryotic cells, bacteria may gain access to intracellular iron stores, so that the toxins also contribute to the bacterial iron supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, F. (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett. 19:29–32

    Article  CAS  Google Scholar 

  2. Makemson, J.C. & Hastings, J.W. (1982) Iron represses bioluminescence and affects catabolite repression of luminescence in Vibrio harveyi. Current Microbiol. 7:181–186

    Article  CAS  Google Scholar 

  3. McCarter, L. & Silverman, M. (1989) Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J. Bacteriol. 171:731–736

    PubMed  CAS  Google Scholar 

  4. Niederhoffer, E.C., Naranjo, C.M. & Fee, J.A. (1989) Relationship of the superoxide dismutase genes, sodA and sodB, to the iron uptake (fur) regulon in Escherichia coli K-12. In: Metal ion homeostasis: molecular biology and chemistry. Liss, New York, pp. 149–158

    Google Scholar 

  5. Laudenbach, D.E. & Straus, N.A. (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC J. Bacteriol. 170:5018–5026

    PubMed  CAS  Google Scholar 

  6. Henderson, N., Austin, S. & Dixon, R.A. (1989) Role of metal ions in negative regulation of nitrogen fixation by the nifL gene product from Klebsiella pneumoniae. Mol. Gen. Genet. 216:484–491

    Article  CAS  Google Scholar 

  7. Hantke, K. (1987) Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol. Gen. Genet. 210:135–139

    Article  PubMed  CAS  Google Scholar 

  8. Braun, V. & Winkelmann, G. (1987) Microbial iron transport, structure and function of siderophores. Progress Clin. Biochem. Med. 5:67–99

    Google Scholar 

  9. Braun, V., Hancock, R.E.W., Hantke, K. & Hartmann, A. (1976) Functional organization of the outer membrane of Escherichia coli: phage and colicin receptors as components of iron uptake systems. J. Suparamol. Struct. 5:37–58

    Article  CAS  Google Scholar 

  10. Bennett, R.L. & Rothfield, L.J. (1976) Genetic and physiological regulation of intrinsic proteins of the outer membrane of Salmonella typhimurium. J. Bacteriol. 127:498–504

    PubMed  CAS  Google Scholar 

  11. Casadaban, M.J. & Cohen, S.M. (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. USA 76:4530–4533

    Article  PubMed  CAS  Google Scholar 

  12. Hantke, K. (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol. Gen. Genet. 182:288–292

    Article  PubMed  CAS  Google Scholar 

  13. Braun, V. & Burkhardt, R. (1982) Regulation of the ColV plasmid-determined iron (III)-aerobactin transport system in Escherichia coli. J. Bacteriol. 152:223–231

    PubMed  CAS  Google Scholar 

  14. Hantke, K. (1983) Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol. Gen. Genet. 191:301–306

    Article  PubMed  CAS  Google Scholar 

  15. Hantke, K. & Zimmermann, L. (1981) The importance of the exbB gene for vitamin B12 and ferric iron transport. FEMS Microbiol. Lett. 12:31–35

    Article  CAS  Google Scholar 

  16. Braun, V., Gross, R., Köster, W. & Zimmermann, L. (1983) Plasmid and chromosomal mutants in the iron(III)-aerobactin transport system of Escherichia coli. Use of streptonigrin for selection. Mol. Gen. Genet. 192:131–139

    Article  PubMed  CAS  Google Scholar 

  17. Zimmermann, L., Hantke, K. & Braun, V. (1984) Exogenous induction of the iron dicitrate transport system of Escherichia coli K12. J. Bacteriol. 159:271–277

    PubMed  CAS  Google Scholar 

  18. Braun, V. (1985) The iron-transport system of Escherichia coli. In: Martonosi, A.N. (ed.) The enzymes of biological membranes, vol 3. Plenum, New York, pp. 617–652

    Google Scholar 

  19. Hantke, K. (1984) Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol. Gen. Genet. 197:337–341

    Article  PubMed  CAS  Google Scholar 

  20. Schaffer, S., Hantke, K. & Braun, V. (1985) Nucleotide sequence of the iron regulatory gene fur. Mol. Gen. Genet. 200:110–113

    Article  PubMed  CAS  Google Scholar 

  21. Wee, S., Neilands, J.B., Bittner, M.L., Hemming, B.C., Haymore, B.L. & Seetharam, R. (1988) Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K12. Biol. Metals 1:62–68

    Article  CAS  Google Scholar 

  22. de Lorenzo, V., Giovannini, G., Herrero, M. & Neilands, J.B. (1988) Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pCoIV-K30. J. Mol. Biol. 20:875–884

    Article  Google Scholar 

  23. Bagg, A. & Neilands, J.B. (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochem. 26:5471–5477

    Article  CAS  Google Scholar 

  24. Griggs, D.W. & Konisky, J. (1989) Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of Fur protein to the promoters. J. Bacteriol. 171:1048–1054

    PubMed  CAS  Google Scholar 

  25. Calderwood, S.B. & Mekalanos, J.J. (1988) Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J. Bacteriol. 170:1015–1017

    PubMed  CAS  Google Scholar 

  26. Bremer, E., Silhavy, T.J. & Weinstock, G.M. (1985) Transposable lambdaplacMu bacteriophages for creating lacZ operon fusions and kanamycin resistance insertions in Escherichia coli. J. Bacteriol. 162:1092–1099

    PubMed  CAS  Google Scholar 

  27. Gross, R., Engelbrecht, F. & Braun, V. (1985) Identification of the genes and their polypeptide products responsible for aerobactin by pColV plasmids. Mol. Gen. Genet. 201:204–212

    Article  PubMed  CAS  Google Scholar 

  28. Dodd, I.B. & Egan, J.B. (1987) Systematic method for the detection of potential Lambda Cro-like DNA-binding regions in proteins. J. Mol. Biol. 194:557–564

    Article  PubMed  CAS  Google Scholar 

  29. Fischer, H.-M., Bruderer, T. & Hennecke, H. (1988) Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucl. Acids Res. 16:2207–2224

    Article  PubMed  CAS  Google Scholar 

  30. Trageser, M. & Unden, G. (1989) Role of cysteine residues and of metal ions in the regulatory functioning of Fnr, the transcriptional regulator of anaerobic respiration in Escherichia coli. Mol. Microbiol. 3:593–599

    Article  PubMed  CAS  Google Scholar 

  31. Chehade, H. & Braun, V. (1988) Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol. Lett. 52:177–182

    Article  CAS  Google Scholar 

  32. Braun, V. & Hantke, K. (1991) Genetics of bacterial iron transport. In: Winkelmann, G. (ed.) Handbook of microbial iron chelates (siderophores). CRC Press, Boca Raton (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braun, V., Schäffer, S., Hantke, K., Tröger, W. (1990). Regulation of Gene Expression by Iron. In: Hauska, G., Thauer, R.K. (eds) The Molecular Basis of Bacterial Metabolism. 41. Colloquium der Gesellschaft für Biologische Chemie 5.–7. April 1990 in Mosbach/Baden, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75969-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75969-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75971-0

  • Online ISBN: 978-3-642-75969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics