Skip to main content

The Analysis of Motion in the Visual Systems of Birds

  • Chapter
Perception and Motor Control in Birds

Abstract

Birds share with many other animal species a highly mobile life-style which produces, amongst other things, a very rich diversity of patterns of motion across their visual fields. As we have argued elsewhere (Frost 1982, 1985, 1993; Frost et al. 1990), these different patterns of visual motion fall generally into two broad classes, object motion and self-induced motion, the former usually resulting from some action by another animal, while the latter is usually produced by some action of the observing animal itself. Each category contains a large number of ecologically specific patterns of visual motion and, in a natural environment, patterns from one or both categories may occur concurrently. It is the task of the visual system to segregate or parse these various patterns of motion into the appropriate events that gave rise to them, and integrate them with other visual features, so that ultimately the bird may respond with behaviour that is appropriate for the situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benowitz LI, Karten HJ (1976) Afferentation of the nucleus rotundus and ectostriatum of the pigeon:a retrograde transport analysis. J Comp Neurol 167: 503–520

    Article  PubMed  CAS  Google Scholar 

  • Bodnarenko SR, McKenna OC (1987) Efferent control of the lentiform nucleus of the mesencephalon in chicken. Soc Neurosci Abstr 13: 864

    Google Scholar 

  • Borst A, Bahde S (1988) Spatio-temporal integration of motion. A simple strategy for safe landing in flies. Naturwissenschaften 75: 265–267

    Article  Google Scholar 

  • Brecha N, Karten HJ, Hunt SP (1980) Projections of the nucleus of basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol 189: 615–670

    Article  PubMed  CAS  Google Scholar 

  • Burns S, Wallman J (1981) Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root ( AOS) in chickens. Exp Brain Res 42: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Clark DL, Uetz GW (1992) Morph-independent mate selection in a dimorphic jumping spider: demonstration of movement bias in female choice using video-controlled courtship behaviour. Anim Behav 43: 247–254

    Article  Google Scholar 

  • Clarke PGH (1977) Some visual and other connections to the cerebellum of the pigeon. J Comp Neurol 174: 535–552

    Article  PubMed  CAS  Google Scholar 

  • Coggshall JC (1972) The landing response and visual processing in the milkweed bug, Oncopeltus fasciatus. J Exp Biol 57: 401–413

    Google Scholar 

  • Collett TS (1977) Stereopsis in toads. Nature 267: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Collett TS (1978) Peering — a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76: 237–241

    Google Scholar 

  • Cott HB (1940) Adaptive colouration in animals. Methuen, London

    Google Scholar 

  • Cutting JE (1978) Generation of synthetic male and female walkers through manipulation of a biomechanical invariant. Perception. 7: 393–405

    Article  PubMed  CAS  Google Scholar 

  • Cutting JE (1986) Perception with an eye for motion. MIT Press, Cambridge

    Google Scholar 

  • Cutting JE, Springer K, Braren PA, Johnson SH (1992) Wayfinding on foot from information in retinal, not optical, flow. J Exp Psychol Gen 121: 41–72

    Article  PubMed  CAS  Google Scholar 

  • Davies MNO, Green PR (1988) Head-bobbing during walking, running and flying: relative motion perception in the pigeon. J Exp Biol 138: 71–91

    Google Scholar 

  • Davies MNO, Green PR (1990) Optic flow-field variables trigger landing in hawk but not in pigeon. Naturwissenschaften 77: 142–144

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Mowrer OH (1930) Head movements and eye functions in pigeons. J Comp Psychol 11: 99–112

    Article  Google Scholar 

  • Erichsen JT, Hodos W, Evinger C, Bessette BB, Phillips SJ (1989) Head orientation in pigeons: postural, locomotor and visual determinants. Brain Behav Evol 33: 268–278

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Reiner T, Hunt S (1979) Optokinetic nystagmus and the accessory optic system of pigeon and turtle. Brain Behav Evol 16: 192–202

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Brecha N, Karten HJ, Hunt SP (1981) Displaced ganglion cells and the accessory optic system of the pigeon. J Comp Neurol 195: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Fleishman LJ (1986) Motion detection in the presence and absence of background motion in an Anolis lizard. J Comp Physiol 159: 711–720

    Article  CAS  Google Scholar 

  • Friedman MB (1975) Visual control of head movements during avian locomotion. Nature 225: 67–69

    Article  Google Scholar 

  • Frost BJ (1978a) The optokinetic basis of head-bobbing in the pigeon. J Exp Biol 74: 187–195

    Google Scholar 

  • Frost BJ (1978b) Moving background patterns alter directionally specific responses of pigeon tectal neurons. Brain Res 151: 599–603

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ (1982) Mechanisms for discriminating object motion from self-induced motion in the pigeon. In: Ingle DJ, Goodale MA, Mansfield JW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 177–196

    Google Scholar 

  • Frost BJ (1985) Neural mechanisms for detecting object motion and figure-ground boundaries contrasted with self-motion detecting systems. In: Ingle D, Jeannerod M, Lee D (eds) Brain mechanisms of spatial vision. Nijhoff, Dordrecht, pp 415–449

    Google Scholar 

  • Frost BJ (1993) Subcortical analysis of visual motion: relative motion, figure-ground discrimination and self-induced optic flow. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 159–175

    Google Scholar 

  • Frost BJ, DiFranco DE (1976) Motion specific units in the pigeon optic tectum. Vision Res 16: 1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ, Nakayama K (1983) Single visual neurons code opposing motion independent of direction. Science 220: 744–745

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ, Scilley PL, Wong SCP (1981) Moving background patterns reveal double opponency of directionally specific pigeon tectal neurons. Exp Brain Res 43: 173–185

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ, Cavanagh P, Morgan B (1988) Deep tectal cells in pigeon respond to kinematograms. J Comp Physiol 162: 639–647

    Article  CAS  Google Scholar 

  • Frost BJ, Wylie DR, Wang Y-C (1990) The processing of object and self-motion in the tectofugal and accessory optic pathways of birds. Vision Res 30: 1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Gamlin PDR, Cohen DH (1988) Retinal projections to the pretectum in the pigeon (Columba livia). J Comp Neurol 269: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Gibson J J (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson J J (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson J J (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983a) Optokinetic nystagmus in the pigeon (Columba livia). II. Role of the pretectal nucleus of the accessory optic system ( AOS ). Exp Brain Res 50: 237–247

    PubMed  CAS  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Dalbera A (1983b) Optokinetic nystagmus in the pigeon (Columba livia). III. Role of the nucleus ectomamillaris (nEM): interactions in the accessory optic system ( AOS ). Exp Brain Res 50: 248–258

    PubMed  CAS  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Dalbera A (1984) Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columba livia). Exp Brain Res 57: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Hildreth EC (1983) The measurement of visual motion. MIT Press, Cambridge

    Google Scholar 

  • Jiang S-Y, Wang Y-C, Frost BJ (1989) Response properties of nucleus rotundus cells in the pigeon. Soc Neurosci Abstr 15: 460

    Google Scholar 

  • Johansson G (1975) Visual motion perception. Sci Am 232: 76–89

    Article  PubMed  CAS  Google Scholar 

  • Julesz B (1975) Experiments in the visual perception of texture. Sci Am 232: 34–43

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Fite KV, Brecha N (1977) Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columba livia). Proc Natl Acad Sci 74: 1752–1756

    Article  Google Scholar 

  • Koenderink J J (1985) Space, form and optical deformations. In: Ingle D, Jeannerod M, Lee D (eds) Brain mechanisms of spatial vision. Nijhoff, Dordrecht, pp 31–58

    Google Scholar 

  • Lee DN (1980) The optic flow field: The foundation of vision. Philos Trans R Soc Lond B 290: 169–179

    Article  CAS  Google Scholar 

  • Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293: 293–294

    Article  Google Scholar 

  • Lee DN, Young DS (1986) Gearing action to the environment. Exp Brain Res (Suppl) 15: 217–230

    Google Scholar 

  • Lee DN, Reddish PE, Rand DT (1991) Aerial docking by hummingbirds. Naturwissenschaften 78: 526–527

    Article  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond B 208: 385–397

    Article  PubMed  CAS  Google Scholar 

  • McKenna O, Wallman J (1981) Identification of avian brain regions responsive to retinal slip using 2-deoxyglucose. Brain Res 210: 455–460

    Article  PubMed  CAS  Google Scholar 

  • McKenna O, Wallman J (1985) Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. Brain Behav Evol 26: 91–116

    Article  PubMed  CAS  Google Scholar 

  • Morgan B, Frost B (1981) Visual response properties of neurons in the nucleus of the basal optic root of pigeons. Exp Brain Res 42: 184–188

    Article  Google Scholar 

  • Nakayama K (1981) Differential motion hyperacuity under conditions of common image motion. Vision Res 21: 1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K (1985) Biological image motion processing: a review. Vision Res 25: 625–660

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Loomis JM (1974) Optical velocity patterns, velocity sensitive neurons and space perception: a hypothesis. Perception 3: 63–80

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf BE, Bischoff HJ (1982) Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotica Gould) — an HRP study. Brain Res 248: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Perrone JA (1992) Model for the computation of self-motion in biological systems. J Opt Soc Am A 9: 177–194

    Article  PubMed  CAS  Google Scholar 

  • Portman A (1959) Animal camouflage. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Preiss R (1987) Motion parallax and figural properties of depth control flight speed in an insect. Biol Cybern 57: 1–9

    Article  Google Scholar 

  • Regan D, Beverley KL (1984) Psychophysics of visual flow patterns and motion in depth. In: Spillman L, Wooten BR (eds) Sensory experience, adaption and perception. Erlbaum, Hillsdale, NJ, pp 215–240

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybern 46: 1–30

    Article  Google Scholar 

  • Reiner A, Brecha N, Karten HJ (1979) A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience 4: 1679–1688

    Article  PubMed  CAS  Google Scholar 

  • Revzin AM (1970) Some characteristics of wide-field units in the brain of the pigeon. Brain Behav Evol 3: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Revzin AM (1979) Functional localization in the nucleus rotundus. In: Granda AM, Maxwell JH (eds) Neural mechanisms of behaviour in the pigeon. Plenum Press, New York, pp 165–176

    Google Scholar 

  • Rogers B, Graham M (1979) Motion parallax as an independent cue for depth perception. Perception 8: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Rogers B, Graham M (1982) Similarities between motion parallax and stereopsis in human depth perception. Vision Res 22: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Simpson JI (1984) The accessory optic system. Annu Rev Neurosci 7: 13–41

    Article  PubMed  CAS  Google Scholar 

  • Sobel EC (1990) The locust’s use of motion parallax to measure distance. J Comp Physiol 176: 579–588

    Google Scholar 

  • Turner ERA (1964) Social feeding in birds. Behaviour 24: 1–46

    Google Scholar 

  • von Grunau MW, Frost BJ (1983) Double opponent-process mechanism underlying receptive field structure of directionally specific cells of cat lateral suprasylvian visual area. Exp Brain Res 49: 84–92

    Article  Google Scholar 

  • Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297: 147–148

    Article  Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust Schistocerca gregaria. J Exp Biol 36: 512–525

    Google Scholar 

  • Wallman J, McKenna OC, Burns S, Velez J, Weinstein B (1981) Relation of the accessory optic system and pretectum to optokinetic responses in chickens. In: Fuchs AF, Becker W (eds) Progress in oculomotor research developmental neuroscience, vol 12. Elsevier, Amsterdam, pp 435–442

    Google Scholar 

  • Wang Y-C (1992) The processing of luminance, colour, motion and looming stimuli in neurons in the tectofugal pathway of pigeon. Thesis, Queen’s University, Kingston, Canada

    Google Scholar 

  • Wang Y-C, Frost BJ (1992) Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356: 236–238

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-C, Jiang S-Y, Frost BJ (1993) Visual processing in pigeon nucleus rotundus: luminance, colour, motion and looming subdivisions. Visual Neurosci 10: 21–30

    Article  CAS  Google Scholar 

  • Warren R, Wertheim AH (1990) Perception and control of self-motion. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Warren WH Jr, Hannon DJ (1988) Direction of self-motion is perceived from optical flow. Nature 336: 162–163

    Article  Google Scholar 

  • Westheimer G, McKee SP (1975) Visual acuity in the presence of retinal image motion. J Opt Soc Am 65: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Winterson BJ, Brauth SE (1985) Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia). Exp Brain Res 60: 215–226

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR (1991) Neural mechanisms for distinguishing self-translation and self-rotation in the pigeon. Thesis, Queen’s University, Kingston, Canada

    Google Scholar 

  • Wylie DR, Frost BJ (1990a) Visual response properties of neurons in the nucleus of the basal optic root of the pigeon: a quantitative analysis. Exp Brain Res 82: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR, Frost BJ (1990b) Binocular neurons in the nucleus of the basal optic root (nBOR) of the pigeon are selective for either translational or rotational visual flow. Visual Neurosci 5: 489–495

    Article  CAS  Google Scholar 

  • Wylie DR, Frost BJ (1991) Purkinje cells in the vestibulocerebellum of the pigeon respond best to either translational or rotational wholefield visual motion. Exp Brain Res 86: 229–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frost, B.J., Wylie, D.R., Wang, Y.C. (1994). The Analysis of Motion in the Visual Systems of Birds. In: Davies, M.N.O., Green, P.R. (eds) Perception and Motor Control in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75869-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75869-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75871-3

  • Online ISBN: 978-3-642-75869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics