Skip to main content
Log in

Figure-ground discrimination by relative movement in the visual system of the fly

Part II: Towards the neural circuitry

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A moving object can be separated from its surround on the basis of motion information alone. It has been known for some time that various species and especially the housefly can discriminate relative motion of an object and its background, even when the two have an identical texture. An earlier paper (Reichardt and Poggio, 1979) has analyzed on the basis of behavioural experiments the main features of the algorithm used by the fly to separate figure from ground. This paper (a) proposes the basic structure of a neuronal circuitry possibly underlying the detection of discontinuities in the optical flow by the visual system of the houseflyMusca; (b) compares detailed predictions of the model circuitry with old and new behavioural experiments onMusca (measuring its attempts to fixate an object), and (c) studies the neuronal realization of the model circuitry in terms of electrophysiological recordings from the lobula plate horizontal cells of the blowflyCalliphora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, C.L., Braddick, O.J.: Does segregation of differently moving areas depend on relative or absolute displacement? Vision Res.22, 851–856 (1982)

    Google Scholar 

  • Barlow, H.B., Levick, W.R.: The mechanism of directionally sensitive units in the rabbits retina. J. Physiol.178, 477–504 (1965)

    Google Scholar 

  • Bülthoff, H.: Figure-ground discrimination in the visual system ofDrosophila melanogaster. Biol. Cybern.41, 139–145 (1981)

    Google Scholar 

  • Burr, D.C.: Temporal summation of moving images by the human visual system. Proc. R. Soc. London B211, 321–339 (1982)

    Google Scholar 

  • Carpenter, R.H.S.: Movements in the eyes. London: Pion 1979

    Google Scholar 

  • Collett, T.S.: Visual neurones for tracking moving targets. Nature232, 127–130 (1971)

    Google Scholar 

  • Collett, T.S., King, A.J.: Vision during flight. In: The compound eye and vision of insects. Horridge, G.A. (ed.). Oxford: Clarendon Press 1975

    Google Scholar 

  • Diener, H.C., Wist, E.R., Dichgans, J., Brandt, T.H.: The spatial frequency effect on perceived velocity. Vision Res.16, 169–176 (1976)

    Google Scholar 

  • Eckert, H.: The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata. J. Comp. Physiol.143, 511–526 (1981)

    Google Scholar 

  • Fennema, C.I., Thompson, W.B.: Velocity determination in scenes containing several moving objects. Comp. Graph. Image Process9, 301–315 (1979)

    Google Scholar 

  • Hausen, K.: Monocular and binocular computation of motion in the lobula plate of the fly. In: Verh. Dtsch. Zool. Ges.1981, pp. 49–70. Stuttgart: Gustav Fischer Verlag 1981

    Google Scholar 

  • Hausen, K.: Movement sensitive interneurons in the optomotor system of the fly. 1. The horizontal cells: structure and signals. Biol. Cybern.45, 143–156 (1982a)

    Google Scholar 

  • Hausen, K.: Movement sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern.46, 67–79 (1982b)

    Google Scholar 

  • Hausen, K., Wehrhahn, C.: Microsurgery of identified neurons of flies and their role in flight behaviour (in preparation) (1983)

  • Heimburger, L., Poggio, T., Reichardt, W.: A special class of nonlinear interactions in the visual system of the fly. Biol. Cybern.21, 103–105 (1976)

    Google Scholar 

  • Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. (Special Issue on Computer Vision)17, 185–203 (1981)

    Google Scholar 

  • Julesz, B.: Foundations of cyclopean perception. Chicago: University of Chicago Press 1971

    Google Scholar 

  • Katz, B., Miledi, R.: Further study of the role of calcium in synaptic transmission. J. Physiol.207, 789–801 (1970)

    Google Scholar 

  • Koch, C., Poggio, T., Torre, V.: Retinal ganglion cells: functional interpretation of dendritic morphology. Philos. Trans. R. Soc. London B298, 227–264 (1982)

    Google Scholar 

  • Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia cannicularis): description and analysis. J. Comp. Physiol.89, 331–357 (1974)

    Google Scholar 

  • Longuet-Higgins, H.C., Prazdny, K.: The interpretation of moving retinal image. Proc. R. Soc. London B208, 358–397 (1980)

    Google Scholar 

  • Marr, D.C.: Vision. San Francisco: Freeman 1982

    Google Scholar 

  • Marr, D.C., Poggio, T.: A theory of human stereo vision. M.I.T. Artificial Intelligence Laboratory. A.I. Memo No. 451, November 1977

  • Marr, D.C., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. R. Soc. London B211, 151–180 (1981)

    Google Scholar 

  • O'Shea, M., Fraser-Rowell, C.H.: Protection from habituation by lateral inhibition. Nature254, 53–54 (1975)

    Google Scholar 

  • Palka, J.: Discrimination between movements of eye and object by visual interneurons of crickets. J. Exp. Biol.50, 723–732 (1969)

    Google Scholar 

  • Pierantoni, R.: A look into the cockpit of the fly. The architecture of the lobula plate. Cell Tiss. Res.171, 101–122 (1976)

    Google Scholar 

  • Poggio, T.: Visual algorithms (in preparation) (1983)

  • Poggio, T., Reichardt, W.: A theory of pattern induced flight orientation of the flyMusca domestica. Kybernetik12, 185–203 (1973)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q. Rev. Biophys.9, 377–438 (1976)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Characterization of nonlinear interactions in the fly's visual system, pp. 64–84. Appendix 4: A polynomial representation of algorithms, pp. 197–202. In: Theoretical approaches in neurobiology. Reichardt, W.E., Poggio, T. (eds.). Cambridge, MA, London: MIT Press 1981

    Google Scholar 

  • Poggio, T., Reichardt, W., Hausen, K.: A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften68, 443–446 (1981)

    Google Scholar 

  • Poggio, T., Torre, V.: A theory of synaptic interactions, pp. 28–38. Appendix 2: The mathematics of postsynpatic interaction, pp. 188–192. In: Theoretical approaches in neurobiology. Reichardt, W.E., Poggio, T. (eds.). Cambridge, MA, London: MIT Press 1981

    Google Scholar 

  • Regan, D., Spekreijse, H.: Electrophysiological correlate of binocular depth perception in man. Nature225, 92–94 (1970)

    Google Scholar 

  • Reichardt, W.: Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z. Naturforsch.12b, 448–457 (1957)

    Google Scholar 

  • Reichardt, W.: Musterinduzierte Flugorientierung. Verhaltensversuche an der FliegeMusca domestica. Naturwissenschaften60, 122–138 (1973)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q. Rev. Biophys.9, 311–375 (1976)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Figure-ground discrimination by relative movement in the visual system of the fly. Part I. Experimental results. Biol. Cybern.35, 81–100 (1979)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of flight in flies. In: Theoretical approaches in neurobiology. Reichardt, W., Poggio, T. (eds.). Cambridge, MA, London: MIT Press 1981

    Google Scholar 

  • Richards, W., Lieberman, H.R.: Velocity blindness during shearing motion. Vision Res.22, 97–100 (1982)

    Google Scholar 

  • Srinivasan, M.V., Dvorak, D.R.: Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol.140, 1–23 (1980)

    Google Scholar 

  • Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. London B202, 409–416 (1978)

    Google Scholar 

  • Virsik, R., Reichardt, W.: Tracking of moving objects by the flyMusca domestica. Naturwissenschaften61, 132–133 (1974)

    Google Scholar 

  • Virsik, R., Reichardt, W.: Detection and tracking of moving objects by the flyMusca domestica. Biol. Cybern.23, 83–98 (1976)

    Google Scholar 

  • Wagner, H.: Flow-field variables trigger landing in flies. Nature297, 147–148 (1982)

    Google Scholar 

  • Wehrhahn, C.: Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol. Cybern.32, 235–241 (1979)

    Google Scholar 

  • Wehrhahn, C.: Fast and slow flight torque responses in flies and their possible role in visual orientation behaviour. Biol. Cybern.40, 213–221 (1981)

    Google Scholar 

  • Wehrhahn, C., Poggio, T., Bülthoff, H.: Tracking and chasing in houseflies (Musca). An analysis of 3-D flight trajectories. Biol. Cybern.45, 123–130 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We had planned a paper (cited as Part II in Reichardt and Poggio, 1979) about the visual algorithms used by the fly for computing movement and relative movement. We feel that the present paper, which studies the neural circuitry implementing these algorithms fulfills our previous goals. Another paper on more abstract algorithmic aspects of the movement and relative movement computations will appear elsewhere

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, W., Poggio, T. & Hausen, K. Figure-ground discrimination by relative movement in the visual system of the fly. Biol. Cybern. 46 (Suppl 1), 1–30 (1983). https://doi.org/10.1007/BF00595226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00595226

Keywords

Navigation