Skip to main content

The Ubiquitin System and the Heat Shock Response

  • Conference paper
Stress Proteins

Abstract

A cell subjected to an increase in temperature as little as 10% above the physiologically normal range suffers damage that can permanently affect its growth and function. There are, however, a number of activities that protect the cell from a heat shock as well as other kinds of environmental stress. Research over the past 15 years has clearly established that one of these protective mechanisms is the induction of heat shock proteins. Chapters in this volume provide important clues as to how the synthesis of the major universal stress protein HSP70 is regulated and how it functions as a “ehaperone” to form complexes with proteins that misfold or unfold during stress and thus “rescue” these proteins from irreversible damage and degradation. Two recent reviews (Pelham 1989; Rothman 1989) elaborate further on functions of several proteins closely related in structure to the major heat shock proteins. But not all stress-damaged proteins can be rescued and it is now clear that stressed cells also activate several components of a proteolytic degradation system that normally functions to “turn over” cytoplasmic and nuclear proteins. This enzymatic pathway is found in all eukaryotic cells and employs the small polypeptide called ubiquitin to mark a protein for proteolysis. Many of the enzymes utilized in ubiquitin-dependent proteolysis have been isolated and examined in detail (Hershko 1988), and recent studies show that several of these are induced by heat shock and other stressors. In this chapter I review these developments and the relationship of the ubiquitin degradation system to the cell’s stress response program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen MW, Baila NR, Goldknopf IL, Busch H (1981) Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver releases histone H2A and ubiquitin from conjugate protein A24. Biochemistry 20:1100–1104

    Article  PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5:949–956

    PubMed  CAS  Google Scholar 

  • Bond U, Agell N, Haas AL, Redman K, Schlesinger MJ (1988) Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem 263:2384–2388

    PubMed  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A et al. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  PubMed  CAS  Google Scholar 

  • DiStefano DL, Wand AJ (1987) Two-dimensional 1H NMR study of human ubiquitin: a main chain directed assignment and structure analysis. Biochemistry 26:7272–7281

    Article  CAS  Google Scholar 

  • Eytan E, Ganoth D, Armon T, Hershko A (1989) ATP-dependent incorporation of 20S protease into the 26S complex that degrades protein conjugated to ubiquitin. Proc Natl Acad Sci USA 86:7751–7755

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature (Lond) 338:394–401

    Article  CAS  Google Scholar 

  • Ganoth D, Leshinsky E, Eytan E, Hershko A (1988) A multicomponent system that degrades proteins conjugated to ubiquitin. J Biol Chem 263:12412–12419

    PubMed  CAS  Google Scholar 

  • Glover CVC (1982) Heat shock effects on protein phosphorylation in Drosophila. In: Schlesinger MJ, Ashburner M, Tissieres A (eds) Heat shock from bacteria to man. Cold Spring Harbor Lab, Cold Spring Harbor, p 227

    Google Scholar 

  • Goebl MG, Yochem J, Jentsch S, McGrath J, Varshavsky A, Beyers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Goldknopf IL, Busch H (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 74:864–868

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Scheid M, Hammerling U, Boyce EA, Schlesinger DH, Niall HD (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA 72:11–15

    Article  PubMed  CAS  Google Scholar 

  • Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264:16700–16712

    PubMed  CAS  Google Scholar 

  • Heller H, Hershko A (1990) A ubiquitin-protein ligase specific for type III protein substrates. J Biol Chem 265:6532–6535

    PubMed  CAS  Google Scholar 

  • Hershko A (1988) Ubiquitin-mediated protein degradation. J Biol Chem 263:15237–15240

    PubMed  CAS  Google Scholar 

  • Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature (Lond) 329:131–134

    Article  CAS  Google Scholar 

  • Kirchoff LV, Kwang SK, Engman DM, Donelson JE (1988) Ubiquitin genes in Trypanosomatidae. J Biol Chem 263:12698–12704

    Google Scholar 

  • Lowe J, Blanchard A, Morrei K et al. (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick disease and Alzheimer disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease. J Pathol 155:9–15

    Article  PubMed  CAS  Google Scholar 

  • Matsui S-I, Seon BK, Sandberg AA (1979) Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromatin condensation. Proc Natl Acad Sci USA 76:6386–6390

    Article  PubMed  CAS  Google Scholar 

  • Matsui S-I, Sandberg AA, Negoro S, Seon BK, Goldstein G (1982) Isopeptidase: a novel eukaryotic enzyme that cleaves isopeptide bonds. Proc Natl Acad Sci USA 79:1535–1539

    Article  PubMed  CAS  Google Scholar 

  • Matthews W, Tanaka K, Driscoll J, Ichikara A, Goldberg AL (1989) Involvment of the proteasome in various degradative processes in mammalian cells. Proc Natl Acad Sci USA 81:2597–2601

    Article  Google Scholar 

  • Mueller RD, Yasada H, Hatch CL, Bonner WM, Bradbury EM (1985) Identification of ubiquitinated H2A and H2B in Physarum polychephalum: disappearance of these proteins at metaphase and reappearance at anaphase. J Biol Chem 260:5147–5153

    PubMed  CAS  Google Scholar 

  • Muller-Taubenberger A, Graack HR, Grohmann L, Schleicher M, Gerisch G (1989) An extended ubiquitin of Dictyostelium is located in the small ribosomal subunit. J Biol Chem 264:5319–5322

    PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1984) Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila HSP70. EMBO J 3:3087–3093

    PubMed  CAS  Google Scholar 

  • Nickel BE, Allis CD, Davie JR (1989) Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28:958–963

    Article  PubMed  CAS  Google Scholar 

  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  CAS  Google Scholar 

  • Parag HS, Raboy B, Kulka RG (1987) Effect of heat shock on protein degradation in mammalian cells: involvment of the ubiquitin system. EMBO J 6:55–61

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1989) Heat shock and the sorting of luminal ER proteins. EMBO J 8:3171–3176

    PubMed  CAS  Google Scholar 

  • Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, radl8, rev3 and rad5 mutations. Mol Gen Genet 184:471–478

    Article  PubMed  CAS  Google Scholar 

  • Redman KL, Rechsteiner M (1989) Identification of the long ubiquitin extension as a ribosomal protein S27A. Nature (Lond) 338:438–440

    Article  CAS  Google Scholar 

  • Reiss Y, Kaim D, Hershko A (1988) Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. J Biol Chem 263:2693–2698

    PubMed  CAS  Google Scholar 

  • Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in the cell. Cell 59:591–601

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Bond U (1987) Ubiquitin genes. Oxf Surv Euk Genes 4:77–91

    CAS  Google Scholar 

  • Schlesinger MJ, Collier NC, Agell N, Bond U (1989) Molecular events in avian cells stressed by heat shock and arsenite. In: Pardue ML, Feramisco JR, Lindquist S (eds) Stress-induced proteins. Alan R Liss, New York, p 137

    Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective protein degradation, a central growth function essential during heat shock. EMBO J 9:543–550

    PubMed  CAS  Google Scholar 

  • Sung, P, Prakash S, Prakash L (1988) The RAD6 protein of Saccharomyces cerevisiae polyu-biquitinates histones, and its acidic domain mediates this activity. Genes Dev 2:1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Swindle J, Ajioka J, Eisen H et al. (1988) the genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J 7:1121–1127

    PubMed  CAS  Google Scholar 

  • Vijay-kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544

    Article  CAS  Google Scholar 

  • Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and the appearance of intranuclear actin filaments in rat fibroblasts after heat shock treatment. J Cell Biol 101:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Wu RS, Kohn KW, Bonner WM (1981) Metabolism of ubiquitinated histones. J Biol Chem 256:5916–5920

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlesinger, M.J. (1990). The Ubiquitin System and the Heat Shock Response. In: Schlesinger, M.J., Santoro, M.G., Garaci, E. (eds) Stress Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75815-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75815-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75817-1

  • Online ISBN: 978-3-642-75815-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics