Skip to main content

Role of Heat Shock Factors in Stress-Induced Transcription: An Update

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2693))

Abstract

Heat shock proteins (HSP) are rapidly induced after proteotoxic stresses such as heat shock and accumulate at high concentrations in cells. HSP induction involves primarily a family of heat shock transcription factors (HSF) that bind the heat shock elements of the HSP genes and mediate transcription in trans. We discuss methods for the study of HSP binding to HSP promoters and the consequent increases in HSP gene expression in vitro and in vivo.

This work was supported by NIH research grants RO-1CA047407, R01CA119045 and RO-1CA094397.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorger PK, Pelham HRB (1987) Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6:3035–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sorger PK, Nelson HCM (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813

    Article  CAS  PubMed  Google Scholar 

  3. Sorger PK, Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  CAS  PubMed  Google Scholar 

  4. Rabindran SK et al (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    Article  CAS  PubMed  Google Scholar 

  5. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  6. He H et al (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278(37):35465–35475

    Article  CAS  PubMed  Google Scholar 

  7. Fujimoto M et al (2009) A novel mouse HSF3 has the potential to activate non-classical heat shock genes during heat shock. Mol Biol Cell 21(1):106–116

    Article  PubMed  Google Scholar 

  8. Tanabe M et al (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17(6):1750–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanabe M et al (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274(39):27845–27856

    Article  CAS  PubMed  Google Scholar 

  10. Kumar M et al (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in arabidopsis. Mol Plant 2(1):152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scharf KD et al (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9(13):4495–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McMillan DR et al (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  CAS  PubMed  Google Scholar 

  13. Morange M (2006) HSFs in development. Handb Exp Pharmacol 172:153–169

    Article  CAS  Google Scholar 

  14. Prince TL et al (2020) HSF1: primary factor in molecular chaperone expression and a major contributor to cancer morbidity. Cell 9(4):1046

    Article  CAS  Google Scholar 

  15. Abravaya K et al (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock protein expression. Genes Dev 6:1153–1164

    Article  CAS  PubMed  Google Scholar 

  16. Zou J et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  CAS  PubMed  Google Scholar 

  17. Bunch H et al (2014) TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 21(10):876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guettouche T et al (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shamovsky I et al (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440(7083):556–560

    Article  CAS  PubMed  Google Scholar 

  20. Bunch H et al (2015) Transcriptional elongation requires DNA break-induced signalling. Nat Commun 6:10191

    Article  CAS  PubMed  Google Scholar 

  21. Mosser DD et al (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17(9):5317–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Price BD, Calderwood SK (1992) Heat-induced transcription from RNA polymerases II and III and HSF binding are co-ordinately regulated by the products of the heat shock genes. J Cell Physiol 153:392–401

    Article  CAS  PubMed  Google Scholar 

  23. Zhao M et al (2002) Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. J Biol Chem 277(46):44539–44547

    Article  CAS  PubMed  Google Scholar 

  24. Subjeck JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol 55(656):579–584

    Article  CAS  PubMed  Google Scholar 

  25. Wang X et al (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281(2):782–791

    Article  CAS  PubMed  Google Scholar 

  26. Soncin F, Prevelige R, Calderwood SK (1997) Expression and purification of human heat-shock transcription factor 1. Protein Expr Purif 9(1):27–32

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber E et al (1989) Rapid detection of octamer binding proteins with “mini-extracts” prepared from a small number of cells. Nucleic Acids Res 17:6419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu B, Hunt C, Morimoto RI (1985) Structure and expression of the human gene encoding the major heat shock protein HSP70. Mol Cell Biol 5:330–341

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruce JL et al (1999) Activation of heat shock transcription factor 1 to a DNA binding form during the G(1)phase of the cell cycle. Cell Stress Chaperones 4(1):36–45

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cahill CM et al (1996) Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 271(40):24874–24879

    Article  CAS  PubMed  Google Scholar 

  31. Nunes SL, Calderwood SK (1995) Heat shock factor-1 and the heat shock cognate 70 protein associate in high molecular weight complexes in the cytoplasm of NIH-3T3 cells. Biochem Biophys Res Commun 213(1):1–6

    Article  CAS  PubMed  Google Scholar 

  32. Westwood T, Wu C (1993) Activation of drosophila heat shock factor: conformational changes associated with monomer-to-trimer transition. Mol Cell Biol 13:3481–3486

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie Y et al (2003) Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J Biol Chem 278(7):4687–4698

    Article  CAS  PubMed  Google Scholar 

  34. Tang D et al (2005) Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rabindran SK et al (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A 88:6906–6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oesterreich S et al (1996) Basal regulatory promoter elements in the hsp27 gene in human breast carcinoma cells. Biochem Biophys Res Commun 222:155–163

    Article  CAS  PubMed  Google Scholar 

  37. Chen C et al (1997) Heat shock factor 1 represses Ras-induced transcriptional activation of the c-fos gene. J Biol Chem 272(43):26803–26806

    Article  CAS  PubMed  Google Scholar 

  38. Wang XZ, Asea A, Xie Y, Kabingu E, Stevenson MA, Calderwood SK (2000) RSK2 represses HSF1 activation during heat shock. Cell Stress Chaperones 5:432–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hunt C, Calderwood SK (1990) Characterization and sequence of a mouse HSP70 gene and its expression in mouse cell lines. Gene 87:199–204

    Article  CAS  PubMed  Google Scholar 

  40. Xie Y et al (2002) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277(14):11802–11810

    Article  CAS  PubMed  Google Scholar 

  41. Bunch H et al (2021) BRCA1-BARD1 regulates transcription through modulating topoisomerase IIbeta. Open Biol 11(10):210221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bunch H et al (2019) P-TEFb regulates transcriptional activation in non-coding RNA genes. Front Genet 10:342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong J et al (2021) Tetraarsenic oxide affects non-coding RNA transcriptome through deregulating polycomb complexes in MCF7 cells. Adv Biol Regul 80:100809

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bunch, H., Calderwood, S.K. (2023). Role of Heat Shock Factors in Stress-Induced Transcription: An Update. In: Calderwood, S.K., Prince, T.L. (eds) Chaperones. Methods in Molecular Biology, vol 2693. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3342-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3342-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3341-0

  • Online ISBN: 978-1-0716-3342-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics