Skip to main content

The Cellular Functions of Chaperonins

  • Conference paper
Stress Proteins

Abstract

It is apparent that a major sub-set of heat shock proteins assist other polypeptides to maintain, or assume, a conformation required for their correct assembly into biologically active structures (Georgopoulos et al. 1973; Kochan and Murialdo 1983; Goloubinoff et al. 1989; Cheng et al. 1989; Ostermann et al. 1989; Bresnick et al. 1989) or localization (Deshaies et al. 1988; Chirico et al. 1988; Zimmermann et al. 1988; Bochkareva et al. 1988; Lecker et al. 1989). This group of proteins function as molecular chaperones, and they have been defined as proteins which assist the assembly of some oligomeric proteins, but are not components of the final structure (Ellis 1987; Ellis et al. 1989; Ellis and Hemmingsen 1989). One distinct group of related molecular chaperones are found in prokaryotes, mitochondria, and plastids, and are called chaperonins (Hemmingsen et al. 1988). In this chapter we outline the discovery and characterization of chaperonins in prokaryotic and eukaryotic organisms, and also describe recent data that show that these proteins have an important role in protein folding in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersson I, Knight S, Schneider G et al. (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature (Lond) 337:229–234

    Article  CAS  Google Scholar 

  • Andrews TJ, Lorimer GH (1987) Rubisco: structure, mechanisms, and prospects for improvement. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, Vol 10. Academic Press, Lond New York, p 131

    Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated pea chloroplasts. Biochim Biophys Acta 608:19–31

    PubMed  CAS  Google Scholar 

  • Blair GE, Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of Fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319:223–234

    PubMed  CAS  Google Scholar 

  • Bloom MV, Milos P, Roy H (1983) Light-dependent assembly of ribulose 1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 80:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Bochkareva ES, Lissin NM, Girshovich AS (1988) Transient association of newly synthesized unfolded proteins with the heat shock GroEL protein. Nature (Lond) 336:254–257

    Article  CAS  Google Scholar 

  • Bresnick EH, Dalman FC, Sanchez ER, Pratt WB (1989) Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem 264:4992–4997

    PubMed  CAS  Google Scholar 

  • Chapman MS, Suh SW, Curmi PMG, Cascio D, Smith WW, Eisenberg DS (1988) Tertiary structure of plant rubisco: domains and their contacts. Science 241:71–74

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Hartl FU, Martin J et al. (1989) Mitochondrial heatshock protein HSP60 is essential for assembly of proteins imported into yeast mitochondria. Nature (Lond) 337:620–625

    Article  CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock proteins stimulate protein translocation into microsomes. Nature (Lond) 332:805–810

    Article  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (Lond) 332:800–805

    Article  CAS  Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport and assembly. Ann Rev Plant Physiol 32:111–137

    Article  CAS  Google Scholar 

  • Ellis RJ (1987) Proteins as molecular chaperones. Nature (Lond) 328:378–379

    Article  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, van der Vies SM (1988) The rabisco subunit binding protein. Photosynth Res 16:101–115

    Article  CAS  Google Scholar 

  • Ellis RJ, van der Vies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55:145–153

    PubMed  CAS  Google Scholar 

  • Fayet O, Louarn J-M, Georgopoulos C (1986) Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. Mol Gen Genet 202:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The GroES and GroEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bact 171:1379–1385

    PubMed  CAS  Google Scholar 

  • Gatenby AA, van der Vies SM, Bradley D (1985) Assembly in E. coli of a functional multi-subunit ribulose bisphosphate carboxylase from a blue-green alga. Nature (Lond) 314:617–620

    Article  CAS  Google Scholar 

  • Gatenby AA, Lubben TH, Ahlquist P, Keegstra K (1988) Imported large subunits of ribulose bisphosphate carboxylase/oxygenase, but not imported β-ATP synthase subunits, are assembled into holoenzyme in isolated chloroplasts.EMBO J 7:1307–1314

    PubMed  CAS  Google Scholar 

  • Georgopoulos CP, Hendrix RW, Casjens SR, Kaiser AD (1973) Host participation in bacteriophage lambda head assembly. J Mol Biol 76:45–60

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature (Lond) 337:44–47

    Article  CAS  Google Scholar 

  • Gutteridge S, Gatenby AA (1987) The molecular analysis of the assembly, structure and function of rabisco. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, Vol IV. Oxford Univ Press, Oxford, p 95

    Google Scholar 

  • Hemmingsen SM, Ellis RJ (1986) Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol 80:269–276

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM et al. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature (Lond) 333:330–334

    Article  CAS  Google Scholar 

  • Hutchinson EG, Tichelaar W, Hofhaus G, Weiss H, Leonard KR (1989) Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J 8:1485–1490

    PubMed  CAS  Google Scholar 

  • Jenkins AJ, March JB, Oliver IR, Masters M (1986) A DNA fragment containing the groE genes can suppress mutations in the Escherichia coli dnaA gene. Mol Gen Genet 202:446–454

    Article  PubMed  CAS  Google Scholar 

  • Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9:2279–2283

    PubMed  CAS  Google Scholar 

  • Kochan J, Muriaido H (1983) Early intermediates in bacteriophage lambda prohead assembly. II. Identification of biologically active intermediates. Virol 131:100–115

    Article  CAS  Google Scholar 

  • Kochan J, Carrascosa JL, Murialdo H (1984) Bacteriophage lambda preconnectors: purification and structure. J Mol Biol 174:433–447

    Article  PubMed  CAS  Google Scholar 

  • Lecker S, Lill R, Ziegelhoffer T et al. (1989) Three pure chaperone proteins of Escherichia coli -SecB, trigger factor and GroEL- form soluble complexes with precursor proteins in vitro. EMBO J 8:2703–2709

    PubMed  CAS  Google Scholar 

  • Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA (1989) Several proteins imported into chloroplasts form stable complexes with the groEL-related chloroplast molecular chaperone. Plant Cell 1:1223–1230

    Article  PubMed  CAS  Google Scholar 

  • McMullin TW, Hallberg RL (1988) A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol Cell Biol 8:371–380

    PubMed  CAS  Google Scholar 

  • Musgrove JE, Johnson RA, Ellis RJ (1987) Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163:529–534

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with HSP60 and ATP hydrolysis. Nature (Lond) 342:125–129

    Article  Google Scholar 

  • Prasad TK, Hallberg RL (1989) Identification and metabolic characterization of the Zea mays mitochondrial homolog of the Escherichia coli groEL protein. Plant Mol Biol 12:609–618

    Article  CAS  Google Scholar 

  • Pushkin AV, Tsupran VL, Solovjeva NA, Shubin VV, Evstigneeva ZG, Kretovich WL (1982) High molecular weight pea leaf protein similar to the groE protein of Escherichia coli. Biochim Biophys Acta 704:379–384

    Article  CAS  Google Scholar 

  • Reading DS, Hallberg RL, Myers AM (1989) Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature (Lond) 337:655–659

    Article  CAS  Google Scholar 

  • Roy H, Bloom M, Milos P, Monroe M (1982) Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94:20–27

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Hubbs A, Cannon S (1988) Stability and dissociation of the large subunit rabisco binding protein complex in vitro and in organello. Plant Physiol 86:50–53

    Article  PubMed  CAS  Google Scholar 

  • Ruben SM, VanDenBrink-Webb SE, Rein DC, Meyer RR (1988) Suppression of the Escherichia coli ssb-1 mutation by an allele of groEL. Proc Natl Acad Sci USA 85:3767–3771

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Lindqvist Y, Branden CI, Lorimer GH (1986) The three dimensional structure of ribulose-l,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9A resolution. Embo J 5:3409–3415

    PubMed  CAS  Google Scholar 

  • Sternberg N (1973) Properties of a mutant of Escherichia coli defective in bacteriophage λ formation (groE). II. The propagation of phage λ. J Mol Biol 76:25-44

    Article  PubMed  CAS  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1988) Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Dev 2:1851–1858

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, Murialdo H, Georgopolous C (1981) Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci USA 78: 1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Van der Vies SM, Bradley D, Gatenby AA (1986) Assembly of cyanobacterial and higher plant ribulose bisphosphate carboxylase subunits into functional homologous and heterologous enzyme molecules in Escherichia coli. EMBO J 5:2439–2444

    PubMed  Google Scholar 

  • Van Dyk TK, Gatenby AA, LaRossa RA (1989) Genetic suppression demonstrates interaction of the GroE products with many proteins. Nature (Lond) 342:451–453

    Article  Google Scholar 

  • Waldinger D, Eckerskorn C, Lottspeich F, Cleve H (1988) Amino-acid sequence homology of a polymorphic cellular protein from human lymphocytes and the chaperonins from Escherichia coli (groEL) and chloroplasts (rubisco-binding protein). Biol Chem Hoppe-Seyler 369:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Yu M-H, King J (1984) Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. Proc Natl Acad Sci USA 81:6584–6588

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Sagstetter M, Lewis MJ, Pelham HRB (1988) Seventy-kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J 7:2875–2880

    PubMed  CAS  Google Scholar 

  • Zweig M, Cummings D (1973) Cleavage of head and tail proteins during bacteriophage T5 assembly; Selective host involvement in the cleavage of a tail protein. J Mol Biol 80:505–518

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gatenby, A.A. et al. (1990). The Cellular Functions of Chaperonins. In: Schlesinger, M.J., Santoro, M.G., Garaci, E. (eds) Stress Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75815-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75815-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75817-1

  • Online ISBN: 978-3-642-75815-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics