Skip to main content

Use of Ion Selective Microelectrodes to Measure Intracellular Free Mg2+

  • Chapter
Mg2+ and Excitable Membranes

Abstract

Mg2+ has been dubbed “the forgotten cation” (Brady et al. 1987) for although it is the second most common intracellular cation, the study of its homeostasis and its regulatory function in health and disease has long been neglected. Gradually, however, it is becoming clear that Mg2+ plays an important intracellular role: It is a co-factor in numerous enzymatic reactions, has a regulatory function on several ionic channels, influences Ca2+ uptake into the mitochondria and K+ uptake by skeletal muscle, and may play a crucial role in cardiovascular disease (see reviews by Altura 1988; Elin 1988; Shils 1988; Lauter 1989; White and Hartzeil 1989; Review in Am J Med 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alamo L, Lopez JR, Papp L, Sreter FA (1986) Simultaneous measurements by means of ion-specific electrodes of free intracellular ionized calcium and magnesium in rabbit skeletal muscle. Muscle Nerve 9:472–474

    CAS  PubMed  Google Scholar 

  • Altura BM (1988) Ischemic heart disease. Magnesium 7:57–67

    CAS  PubMed  Google Scholar 

  • Alvarez-Leefmans FJ, Gamino SM, Giraldez F, Gonzalez-Serratos H (1986) Intracellular free magnesium in frog muscle fibres measured with ion-selective micro-electrodes. J Physiol (Lond) 378:461–483

    Article  CAS  PubMed Central  Google Scholar 

  • Ammann D (1986) Ion-selective micro-electrodes. Principles, design and application. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Baumgarten CM (1981) A program for calculation of activity coefficients at selected concentrations and temperatures. Comput Biol Med 11:186–196

    Article  Google Scholar 

  • Baylor SM, Hollingworth S, Hui CS, Quinta-Ferreira ME (1986) Properties of the metallochromic dyes arsenazo III, antipyrylazo III and azo 1 in frog skeletal muscle fibres at rest. J Physiol (Lond) 377:89–141

    Article  CAS  Google Scholar 

  • Blatter LA, McGuigan JAS (1986) Free intracellular magnesium concentration in ferret ventricular muscle measured with ion selective micro-electrodes. Q J Exp Physiol 71:467–473

    Article  CAS  PubMed  Google Scholar 

  • Blatter LA, McGuigan JAS (1988) Estimation of the upper limit of the free magnesium concentration measured with Mg-sensitive microelectrodes in ferret ventricular muscle: (1) use of the Nicolsky-Eisenman equation and (2) in calibrating solutions of the appropriate concentration. Magnesium 7:154–165

    CAS  PubMed  Google Scholar 

  • Blatter LA, McGuigan JAS (1991) Intracellular pH regulation in ferret ventricular muscle: the influence of metabolic substrates and the role of Na/H exchange. Circ Res (in press)

    Google Scholar 

  • Blatter LA, Buri A, McGuigan JAS (1989) Free intracellular magnesium concentration in isolated ferret ventricular muscle and in frog skeletal muscle measured with ion-selective microelectrodes containing the new magnesium sensor ETH 5214. J Physiol 418:154P

    Google Scholar 

  • Blatter LA, Fry CH, McGuigan JAS (1992) Ion selective microelectrodes: relevant physiological chemical properties of solutions and the principles of application of the electrodes to intracellular measurement. Prog Biophys Mol Biol (to be submitted)

    Google Scholar 

  • Borchgrevink PC, Bergen AS, Bakoy OE, Jynge P (1989) Magnesium and reperfusion of the ischemic rat heart as assessed by 31P-NMR. Am J Physiol 256:H195–H204

    CAS  PubMed  Google Scholar 

  • Brady H, Ryan M, Horgan J (1987) Magnesium: the forgotten cation. Ir Med J 80:250–253

    CAS  PubMed  Google Scholar 

  • Chapman RA, Suleman IH (1986) Changes in aNa and pHi in isolated ferret ventricular muscle on repletion of the bathing Ca following a period of Ca-deprivation. J Physiol (Lond) 381:120P

    Google Scholar 

  • Chapman RA, Tunstall J (1987) The calcium paradox of the heart. Prog Biophys Mol Biol 50:67–96

    Article  CAS  PubMed  Google Scholar 

  • Chapman RA, Coray A, McGuigan JAS (1983) Sodium/calcium exchange in mammalian ventricular muscle: a study with sodium-sensitive microelectrodes. J Physiol (Lond) 343:253–276

    Article  CAS  Google Scholar 

  • Close RI, Lännergren JI (1984) Arsenazo III calcium transients and latency relaxation in frog skeletal muscle fibres at different sarcomere lengths. J Physiol (Lond) 355:323–344

    Article  CAS  PubMed Central  Google Scholar 

  • Cohen SM, Burt CT (1977) 31P nuclear magnetic relaxation studies of phospocreatine in intact muscle: determination of intracellular free magnesium. Proc Natl Acad Sci USA 74:4271–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkey BE, Duszynski J, Rich TL, Matschinsky B, Williamson JR (1986) Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem 261:2567–2574

    CAS  PubMed  Google Scholar 

  • Dawson MJ, Gadian DG, Wilkie DR (1978) Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 274:4271–4275

    Google Scholar 

  • Dillon PF (1986) Free intracellular Mg2+ in relaxed and contracted porcine carotid arteries. J Physiol (Lond) 371:161P

    Google Scholar 

  • Elin RJ (1988) Magnesium metabolism in health and disease. Dis Mon 4:163–219

    Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    CAS  PubMed  Google Scholar 

  • England PJ, Denton RM, Randle PJ (1967) The influence of magnesium ions and other bivalent metal ions on the aconitase equilibrium and its bearing on magnesium ions by citrate in rat heart. Biochem J 105:32C–33C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry CH (1986) The actions of extracellular magnesium on isolated mammalian ventricular myocardium. J Physiol (Lond) 372:32P

    Google Scholar 

  • Fry CH, Hall SK, Blatter LA, McGuigan JAS (1990) Analysis and presentation of intracellular measurements obtained with ion-selective microelectrodes. Exp Physiol 75:187–198

    Article  CAS  PubMed  Google Scholar 

  • Garfmkel L, Garfmkel D (1984) Calculation of free Mg2+ concentration in adenosine 5′-triphosphate containing solutions in vitro and in vivo. Biochemistry 23:3547–3552

    Article  Google Scholar 

  • Garfmkel L, Altschuld RA, Garfmkel D (1986) Magnesium in cardiac energy metabolism. J Mol cell Cardiol 18:1003–1013

    Article  Google Scholar 

  • Gilbert DL (1960) Magnesium equilibrium in muscle. J Gen Physiol 43:1103–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg RN, Nuttall RL (1978) Evaluated activity and osmotic coefficients for aqueous solutions: the alkaline earth metal halides. J Phys Chem Ref Data 7:263–310

    Article  CAS  Google Scholar 

  • Grinwald PM, Nayler WG (1981) Calcium entry in the. calcium paradox. J Mol Cell Cardiol 13:867–880

    Article  CAS  PubMed  Google Scholar 

  • Günther T, Dorn F (1971) Die intrazelluläre Mg-Ionenaktivität in verschiedenen Säugetierzellen. Z Naturforsch 26B:176–177

    Google Scholar 

  • Gupta RK, Moore RD (1980) 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 255:3987–3993

    CAS  PubMed  Google Scholar 

  • Gupta RK, Wittenberg BA (1987) NMR measurements of cytosolic free magnesium in cardiac myocytes. J Mol Cell Cardiol 19 [Suppl IV]:S51

    Article  Google Scholar 

  • Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng 13:221–246

    Article  CAS  PubMed  Google Scholar 

  • Hammer WJ, Wu YC (1972) Osmotic coefficients and mean activity coefficients of univalent electrolytes in water at 25°C. J Phys Chem Ref Data 4:1047–1099

    Article  Google Scholar 

  • Headrick J, Willis RJ (1989) Cytosolic [Mg++] in simulated hypoxic, or ischaemic rat heart. J Mol Cell Cardiol 21 [Supp II]:S40

    Google Scholar 

  • Hess P, Metzger P, Weingard R (1982) Free magnesium in sheep, ferret, and frog striated muscle at rest measured with ion selective micro-electrodes. J Physiol (Lond) 333:173–188

    Article  CAS  Google Scholar 

  • Hu Z, Bührer T, Müller M, Rusterholz B, Rouilly M, Simon W (1989) Intracellular magnesium ion selective microelectrodes based on a neutral carrier. Anal Chem 61:574–576

    Article  CAS  PubMed  Google Scholar 

  • Kirkels JH, van Echteld CJA, Ruigrok TJC, Meijler FL (1989) Intracellular magnesium during ischemia and reperfusion. J Mol Cell Cardiol 21 [Suppl II]:S110

    Google Scholar 

  • Kirschenlohr HL, Metcalfe JC, Morris PG, Rodrigo GC, Smith GA (1988) Ca2+ transient, Mg2+, and pH measurements in the cardiac cycle by 19F-NMR. Proc Natl Acad Sci USA 85:9017–9021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushmerick MJ, Dillon PF, Meyer RA, Brown TR, Krisanda JM, Sweeny HL (1986) 31P-NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem 261:14420–14429

    CAS  PubMed  Google Scholar 

  • Lanter F, Erne D, Ammann D, Simon W (1980) Neutral carrier based ion-selective electrode for intracellular magnesium activity studies. Anal Chem 52:2400–2402

    Article  CAS  Google Scholar 

  • Lauter DP (ed) (1989) Magnesium deficiency — pathogenesis, prevalence, and strategies for repletion. Am J Cardiol 18 [Suppl G]

    Google Scholar 

  • Lee CO, Dagostino M (1982) Effects of strophanthidin on intracellular Na activity and twitch tension of constantly driven canine Purkinje fibres. Biophys J 40:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LA, Murphy E, Raju B, London RE (1988) Measurement of cytosolic free magnesium ion concentration by 19F NMR. Biochemistry 27:4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Lopez JR, Alamo C, Caputo, Vergara J, DiPolo (1984) Direct measurement of intracellular free magnesium in frog skeletal muscle using magnesium-sensitive microelectrodes. Biochim Biophys Acta 804:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lopez JR, Sanchez V, Ryan JF, Sreter FA, Allen PD (1990) The effects of magnesium on myoplasmic [Ca2+] in malignant hyperthermia susceptable swine. Anesthesiology (in press)

    Google Scholar 

  • MacDermott M (1987) The intracellular concentration of free magnesium in rat skeletal muscle. J Physiol (Lond) 394:14P

    Google Scholar 

  • Maughan D (1983) Diffusible magnesium in frog skeletal muscle. Biophys J 43:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maughan D, Recchia C (1985) Diffusible sodium, potassium, magnesium, calcium, and phosphorus in frog skeletal muscle. J Physiol (Lond) 368:545–563

    Article  CAS  Google Scholar 

  • Miledi R, Parker I, Zhu PH (1982) Calcium transients evoked by action potentials in frog twitch muscle fibres. J Physiol (Lond) 333:655–679

    Article  CAS  Google Scholar 

  • Moore RD (1978) 31P NMR study of intracellular free Mg2+ in intact frog muscle. Fed Proc 37:1608

    Google Scholar 

  • Munoz JL, Deyhimi F, Coles JA (1983) Silanization of glass in the making of ion-sensitive microelectrodes. J Neurosci Methods 8:231–247

    Article  CAS  PubMed  Google Scholar 

  • Murphy E, Freudenrich CC, Levy LA, London RE, Lieberman M (1989 a) Monitoring cytosolic free magnesium in cultured chicken heart cells by the fluorescent indicator Furaptra. Proc Natl Acad Sci USA 86:2981–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy E, Steenbergen C, Levy LA, Raju B, London RE (1989 b) Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem 264:5622–5627

    CAS  PubMed  Google Scholar 

  • Nakayama S, Chihara D, Uno Y, Tomita T (1987) Intracellular Mg2+ in the taenia of guinea-pig caecum. J Muscle Res Cell Motil 8:283

    Google Scholar 

  • Nanninga LB (1961) Calculation of free magnesium, calcium and potassium in muscle. Biochim Biophys Acta 54:338–344

    Article  CAS  PubMed  Google Scholar 

  • Page E, Polimeni PI (1972) Magnesium exchange in rat ventricle. J Physiol (Lond) 224:121–139

    Article  CAS  Google Scholar 

  • Paradise NF, Beeler GW, Vissher MB (1978) Magnesium net fluxes and distribution in rabbit myocardium in irreversible contracture. Am J Physiol 234:C115–C121

    CAS  PubMed  Google Scholar 

  • Palaty V (1971) Distribution of magnesium in the arterial wall. J Physiol (Lond) 218:353–368

    Article  CAS  Google Scholar 

  • Raju B, Murphy E, Levy LA, Hall RD, London RE (1989) A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol 256:C540–C548

    CAS  PubMed  Google Scholar 

  • Reverdin EC, Illanes A, McGuigan JAS (1986) Internal potassium activity in ferret ventricular muscle. Q J Exp Physiol 71:451–465

    Article  CAS  PubMed  Google Scholar 

  • Review (1987) Potassium magnesium depletion: is your patient at risk of sudden death. Am J Med 82 [Suppl 3A]

    Google Scholar 

  • Shils ME (1988) Magnesium in health and disease. Annu Rev Nutr 8:429–460

    Article  CAS  PubMed  Google Scholar 

  • Sokal RT, Rohlf FJ (1969) Biometry. The principles and practice of statistics in biological research. Freedman, San Francisco

    Google Scholar 

  • Staples BR, Nuttall RL (1977) The activity and osmotic coefficients of aqueous calcium chloride at 298.15 K. J Phys Chem Ref Data 6:385–407

    Article  CAS  Google Scholar 

  • Steenbergen C, Deleeuv G, Williamson JR (1978) Analysis of control of glycolysis in ischemic hearts having heterogeneous zones of anoxia. J Mol Cell Cardiol 10:617–639

    Article  CAS  PubMed  Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes. How to make and use them. Academic Press, London

    Google Scholar 

  • Tsien RY, Rink RJ (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta 599:623–638

    Article  CAS  PubMed  Google Scholar 

  • Vassalle M, Lee CO (1984) The relationship among intracellular sodium activity, calcium and strophanthidin inotrophy in canine cardiac Purkinje fibres. J Gen Physiol 83:287–307

    Article  CAS  PubMed  Google Scholar 

  • Vaughan-Jones RD, Kaila K (1986) The sensitivity of liquid sensor, ion-selective microelectrode to changes in temperature and solution level. Pflugers Arch 406:641–644

    Article  CAS  PubMed  Google Scholar 

  • Waddell WJ, Bates RG (1969) Intracellular pH. Physiol Rev 49:285–329

    CAS  PubMed  Google Scholar 

  • White RE, Hartzell HC (1989) Magnesium ions in cardiac function. Regulator of ion channels and second messengers. Biochem Pharmacol 38:859–867

    Article  CAS  PubMed  Google Scholar 

  • Wu ST, Pieper GM, Salhany JM, Eliot RS (1981) Measurement of free magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 nuclear magnetic resonance and multiequilibria analysis. Biochemistry 20:7399–7403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGuigan, J.A.S., Blatter, L.A., Buri, A. (1991). Use of Ion Selective Microelectrodes to Measure Intracellular Free Mg2+ . In: Mg2+ and Excitable Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75636-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75636-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75638-2

  • Online ISBN: 978-3-642-75636-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics