Skip to main content

Abstract

The rabbit has been often used as an experimental animal in atherosclerosis research [51]. Early, in 1908, Ignatowski [34] studied the “influence of animal food on the organism of rabbits” and found an increase of lipids in artery walls when the rabbit was fed with a diet rich in fat and cholesterol. The production of atheromas by cholesterol rich diets became a standard technique and is still used when the effects of cholesterol on the arterial walls is studied. It is the basis of the lipid theory of atherogenesis [1]. A second theory for atherogenesis, the response-to-injury theory [44], is based upon experiments reported by Baumgartner [2]. He induced a thrombogenic reaction with subsequent fibromuscular intimai proliferates in the aortas of rabbits. Using a balloon catheter the endothelial lining of the aorta was removed and the vessel was distended by inflating the balloon. In 1966, Baumgartner and Studer [3] found a relationship between the distension of the aorta and a subsequent proliferation of cells in the intima. The mechanical stimulus caused smooth muscle cells (SMCs) of the media to migrate into the intima and to proliferate there to form a local intimai fibromuscular cushion. In 1979, another model to generate atherosclerotic proliferations was described by Betz and Schlote [7]. Again the rabbit was used as an experimental animal for local weak electrical stimulation of the carotid artery. Both models showed that in the early stages of atherogenesis, SMCs migrate from the media into the subendothelial space where they proliferate to form a focal thickening of the vessel wall termed a “fibromuscular plaque”. In contrast, SMCs of the normal vessel wall reveal a low proliferation rate [18, 19]. In the normal vessel wall a balance exists between factors inhibiting and factors inducing proliferation of SMCs whereby the inhibitory factors dominate. These factors act in a complex manner in vivo and it is very difficult to study the mechanisms of inhibition or activation of SMC proliferation in detail. Since the rabbit was the first and most frequently used animal in experimental atherosclerosis research [51], in vitro systems consisting of cells from the rabbit may be helpful to analyze the interactions of factors affecting the proliferation of SMCs. This does not only save animal experiments [6] but also enables the study of therapeutic aspects which cannot be solved in in vivo experiments [5]. If, for example, a drug suppresses the development of a stenosing proliferate in an artery by inhibiting the migration or proliferation of SMCs in the intima, it cannot be concluded whether the drug causes this response because of its toxicity; it also cannot be concluded whether the drug inhibits the mitotic process directly or via an indirect mechanism, e.g., by inhibiting the permeability of the endothelium. Finally, the in vivo experiment does not allow the conclusion that the drug acts specifically on the SMCs in the artery walls. Therefore, cultures of various cell types are useful in order to study the action of antiatherogenic drugs. One of the most important cell type in this context is the arterial SMC. Cultures of SMCs enable migration and proliferation to be studied under controlled and standard conditions. In vitro it is even possible to observe either the migration or the proliferation as separate phenomena. It is useful to compare the responses of cultured SMCs of rabbits with the in vivo experiments. Thus, the effective doses of antiatherogenic drugs as well as their toxic concentration can be determined in vitro. Cultures of SMCs from the rabbit aorta can be easily established. The isolation of SMCs from the media can be achieved by enzymatic disaggregation [16] or using the primary expiant technique [44]. In culture, SMCs reveal a characteristic behavior of proliferation, migration, differentiation, and growth pattern. Furthermore, more complex culture systems can be established which represent the in vivo situation better than mass cell cultures or clone cultures of SMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assmann G (1982) Zur Ätiologie der Atherosklerose. Hämostaseologie 4:162–168.

    Google Scholar 

  2. Baumgartner H-R (1963) Eine neue Methode zur Erzeugung von Thromben durch gezielte Überdehnung der Gefäßwand. Z Exp Med 137:227–247.

    Article  CAS  Google Scholar 

  3. Baumgartner H-R, Studer A (1966) Folgen des Gefäßkatheterismus am normo-und hypercholesterinaemischen Kaninchen. Pathol Microbiol 29:393–405.

    CAS  Google Scholar 

  4. Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 85:5112–5116.

    Article  PubMed  CAS  Google Scholar 

  5. Betz E, Hämmerle H (1984) Arterienwandproliferate und Zellkulturen als Indikatoren für Hemmstoffe der Atherogenese. Funkt Biol Med 3:46–55.

    CAS  Google Scholar 

  6. Betz E, Hämmerle H (1986) Die Wirkung von atherogenen Stoffen in Zellkulturen und Arterienwänden. In: Bundesministerium für Forschung und Technologie (ed) Ersatzmethoden zum Tierversuch. Bundesministerium für Forschung und Technologie, Bonn pp 253–266.

    Google Scholar 

  7. Betz E, Schlote W (1979) Responses of the vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74:10–20.

    Article  PubMed  CAS  Google Scholar 

  8. Björkerud S (1985) Cultivated human arterial smooth muscle displays heterogeneous pattern of growth and phenotypic variation. Lab Invest 53:303–310.

    PubMed  Google Scholar 

  9. Björnheden T, Bylock A, Hansson GK, Bondjers G (1983) A system for a long-term perfusion of rabbit aorta in vitro. Arteriosclerosis 3:366–382.

    Article  PubMed  Google Scholar 

  10. Blank RS, Thompson MM, Owens GK (1988) Cell cycle versus density dependence of smooth muscle alpha actin expression in cultered rat aorta smooth muscle cells. J Cell Biol 107:299–306.

    Article  PubMed  CAS  Google Scholar 

  11. Bürk RR (1973) A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci USA 70:369–372.

    Article  PubMed  Google Scholar 

  12. Campbell GR, Chamley-Campbell JH, Burnstock G (1981) Differentiation and phenotypic modulation of arterial smooth muscle cells. In: Schwartz CJ, Werhessen NT, Wolf S (eds) Structure and function of the circulation, vol 3. Plenum, New York, pp 357–399.

    Google Scholar 

  13. Cereijido M, Ehrenfeld J, Meza I, Martinez-Palomo A (1980) Structural and functional membrane polarity in cultured monolayers of MOCK cells. J Memb Biol 52:147–159.

    Article  CAS  Google Scholar 

  14. Chamley JH, Campbell GR (1974) Mitosis of contractile smooth muscle cells in tissue culture. Exp Cell Res 84:105–110.

    Article  PubMed  CAS  Google Scholar 

  15. Chamley-Campbell JH, Campbell GR (1981) What controls smooth muscle phenotype? Atherosclerosis 40:347–357.

    Article  PubMed  CAS  Google Scholar 

  16. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61.

    PubMed  CAS  Google Scholar 

  17. Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89:379–383.

    Article  PubMed  CAS  Google Scholar 

  18. Clowes AW, Reidy MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest 49:327–333.

    CAS  Google Scholar 

  19. Clowes AW, Clowes MM, Reidy MA (1986) Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels. Lab Invest 54:295–303.

    PubMed  CAS  Google Scholar 

  20. Ehrlich HP (1980) Culture of aorta. Methods Cell Biol 21A: 117–134.

    Article  PubMed  CAS  Google Scholar 

  21. Fingerle JK (1986) Organkultur der thorakalen Kaninchenaorta. Thesis, University of Tübingen.

    Google Scholar 

  22. Fingerle J, Kraft T (1987) The induction of smooth muscle cell proliferation in vitro using an organ culture system. Int Angiol 6:65–72.

    PubMed  CAS  Google Scholar 

  23. Freshney RI (1983) Culture of animal cells. In: Freshney RI (ed) A manual of basic technique. Liss, New York.

    Google Scholar 

  24. Fuchs JCA, Dixon SH Jr, Hagen P (1979) Lipid metabolism and accumulation in perfused rabbit aorta. J Surg Res 26:611–617.

    Article  PubMed  CAS  Google Scholar 

  25. Gabbiani G (1987) The cytoskeleton of rat aortic smooth muscle cells: normal conditions, experimental intimai thickening and tissue culture. Acta histochem Suppl XXXIV:33–35.

    Google Scholar 

  26. Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchym. Exp Cell Res 10:424–440.

    Article  PubMed  CAS  Google Scholar 

  27. Gröschel-Stewart U, Drenkhahn D (1982) Muscular and cytoplasmic contractile proteins. Coll Relat Res 2:381–463.

    Google Scholar 

  28. Gröschel-Stewart U, Chamley JH, McConnell JD, Burnstock G (1975) Comparison of the reaction of cultured smooth and cardiac muscle cells and fibroblasts to specific antibodies to myosin. Histochemistry 43:215–224.

    Article  PubMed  Google Scholar 

  29. Gröschel-Stewart U, Schreiber J, Mahlmeister C, Weber K (1976) Production of specific antibodies to contractile proteins and their use in immunofluorescence microscopy. I. Antibodies to smooth and striated chicken muscle myosin.Histochemistry 46:229–236.

    Article  PubMed  Google Scholar 

  30. Grünwald J, Haudenschild CC (1984) Intimai injury in vivo activates vascular smooth muscle cell migration and expiant outgrowth in vitro. Arteriosclerosis 4:183–188.

    Article  PubMed  Google Scholar 

  31. Hämmerle H (1987) Wachstum und Differenzierung von arteriellen glatten Muskelzellen bei der Atherombildung und in Zellkulturen. Thesis, University of Tübingen.

    Google Scholar 

  32. Hämmerle H, Fingerle J, Rupp J, Grünwald J, Betz E, Haudenschild CC (1988) Expression of smooth muscle myosin in relation to growth kinetics of cultured aortic smooth muscle cells. Exp Cell Res 178:390–400.

    Article  PubMed  Google Scholar 

  33. Hollander W, Colombo M, Faris B, Franzblau C, Schmid K, Wernli M, Bernasconi U (1984) Changes in the connective tissue proteins, glycosaminoglycans and calcium in the arteries of the cynomolgus monkey during atherosclerotic induction and regression. Atherosclerosis 51:89–108.

    Article  PubMed  CAS  Google Scholar 

  34. Ignatowski AC (1908) Influence of animal food on the organism of rabbits. S Peterb Izviest Imp Voyenno Med Akad 16:154–173.

    Google Scholar 

  35. Kagan HM, Milbury PE Jr, Kramsch DM (1979) A possible role for elastic ligands in the proteolytic degradation of arterial elastic lamellae in the rabbit. Circ Res 44:95–103.

    PubMed  CAS  Google Scholar 

  36. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352.

    Article  PubMed  CAS  Google Scholar 

  37. Lindl T, Bauer J (1987) Zell und Gewebekultur. Einführung in die Grundlagen sowie ausgewählte Methoden und Anwendungen. Fischer, Stuttgart.

    Google Scholar 

  38. Mauger JP, Worcel M, Tassin J, Courtois Y (1975) Contractility of smooth muscle cells of rabbit aorta in tissue culture. Nature 225:337–338.

    Article  Google Scholar 

  39. Mayer HD, Hampton JC, Rosario B (1961) A simple method for removing the resin from epoxy-embedding tissue. J Biophys Biochem Cytol 9:909–910.

    Article  Google Scholar 

  40. Osborne M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol 24:97–132.

    Article  Google Scholar 

  41. Pederson DC, Bowyer DE (1985) Endothelial injury and healing in vitro. Studies using an organ culture system. AJP 119:264–272.

    PubMed  CAS  Google Scholar 

  42. Raff MC, Fields KL, Hakomori SL, Minsky R, Pruss RM, Winter J (1979) Cell-typespecific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174:283–309.

    Article  PubMed  CAS  Google Scholar 

  43. Rhodin JAG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of Physiology, vol 2, sect 2. American Physiological Society, Bethesda, pp 1–31.

    Google Scholar 

  44. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:172–186.

    Article  PubMed  CAS  Google Scholar 

  45. Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell. Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339.

    Article  PubMed  CAS  Google Scholar 

  46. Rovner AS, Murphy RA, Owens GK (1986) Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem 261:14740–14745.

    PubMed  CAS  Google Scholar 

  47. Santillan GG, Schuh J, Chan SI, Bing RJ (1980) Binding and internalization of low density lipoproteins by perfused arteries. Biochem Biophys Res Commun 95:1410–1416.

    Article  PubMed  CAS  Google Scholar 

  48. Spaet TH, Stemerman MB, Veith FJ, Lejnieks I (1975) Intimai injury and regrowth in the rabbit aorta. Medial smooth muscle cells as a source of neointima. Circ Res 36:58–70.

    CAS  Google Scholar 

  49. Skalli O, Bloom WS Ropraz P, Azzarone B, Gabbiani G (1986) Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J Submicrosc Cytol 18:481–493.

    PubMed  CAS  Google Scholar 

  50. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796.

    Article  PubMed  CAS  Google Scholar 

  51. Vesselinovitch D (1988) Animal models and the study of atherosclerosis. Arch Pathol Lab Med 112:1011–1016.

    PubMed  CAS  Google Scholar 

  52. Weber E, Hämmerle H, Vatti R, Berti G, Betz E (1986) Co-cultivation of endothelial and smooth muscle cells on opposite sides of a porous membrane. Appl Pathol 4:246–252.

    PubMed  CAS  Google Scholar 

  53. Worton RG, Duff C (1979) Karyotyping. Methods Enzymol 62:322–344.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fallier-Becker, P., Rupp, J., Fingerle, J., Betz, E. (1990). Smooth Muscle Cells from Rabbit Aorta. In: Piper, H.M. (eds) Cell Culture Techniques in Heart and Vessel Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75262-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75262-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75264-3

  • Online ISBN: 978-3-642-75262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics