Skip to main content

Identification of the Effective Dose of Inhaled Toxicants: General and Specific Problems

  • Conference paper
Assessment of Inhalation Hazards

Part of the book series: ILSI Monographs ((ILSI MONOGRAPHS))

  • 115 Accesses

Abstract

The establishment of a dose-effect relationship is based on a parameter of dose. This may be difficult to assess when an inhaled toxicant is being considered. The problem is generally known for particles, and for inhaled gases and vapors. A classical example of the latter is vinyl chloride. Vinyl chloride is a gaseous compound and known as a carcinogen in man and in experimental animals; its biochemical activation mechanism has been clarified. Vinyl chloride requires metabolic transformation to its epoxide, which is the ultimate genotoxic carcinogen at the DNA level (for review, see Bolt 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACGIH (1988) TLVs, threshold limit values and biological exposure indices for 1988-1989. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, USA.

    Google Scholar 

  • Benowitz NL, Jacob P, Jones RT, Rosenberg, J (1982) Inter-individual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther 221:368–372.

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Kuyt F, Jacob P, Jones RT, Osman AL (1983) Cotinine disposition and effects. Clin Pharmacol Ther 34:604–611.

    Article  PubMed  CAS  Google Scholar 

  • Bond JA, Dahl AR, Henderson RF, Dutcher JS, Mauderly JL, Birnbaum LS (1986) Species differences in the disposition of inhaled butadiene. Toxicol Appl Pharmacol 84:617–627.

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM (1987) Experimental toxicology of formaldehyde. J Cancer Res Clin Oncol 113:305–309.

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM (1988) Roles of etheno-DNA adducts in tumorigenicity of olefins. CRC Crit Rev Toxicol 18:299–309.

    Article  CAS  Google Scholar 

  • Bolt HM, Schmiedel G, Filser JG, Rolzhäuser HP, Lieser K, Wistuba D, Schurig V (1983) Biological activation of 1,3-butadiene to vinyl oxirane by rat liver microsomes and expiration of the reactive metabolite by exposed rats. J Cancer Res Clin Oncol 106:112–118.

    Article  PubMed  CAS  Google Scholar 

  • Casanova M, Heck H d’A (1987) Further studies of the metabolic incorporation and covalent binding of 3H-and 14C-formaldehyde in Fischer-344 rats: effects of glutathione depletion. Toxicol Appl Pharmacol 89:105–121.

    Article  PubMed  CAS  Google Scholar 

  • Casanova-Schmitz M, Starr TB, Heck H d’A (1984) Differentiation between metabolic incorporation and covalent binding in the labeling of macromolecules in the rat nasal mucosa and bone marrow by inhaled 14C-and 3H-formaldehyde. Toxicol Appl Pharmacol 76:26–44.

    Article  PubMed  CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft (DFG) (1988) Maximum concentrations at the workplace and biological tolerance values for working materials. Report no XXIII. VCH, Weinheim.

    Google Scholar 

  • Feron VJ, Bosland MC (eds) (1988) Nasal carcinogenesis in rodents. Symposium, October 24–28, 1988, Veldhoven, NL.

    Google Scholar 

  • Feron VJ, Hendriksen CFM, Speek AJ, Til HP, Spit BJ (1981) Lifespan oral toxicity study of vinyl chloride in rats. Food Cosmet Toxicol 19:317–333.

    Article  PubMed  CAS  Google Scholar 

  • Filser JG, Bolt HM (1984) Inhalation pharmacokinetics based on gas uptake studies. VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats. Arch Toxicol 55:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Gehring PJ, Watanabe PE, Park CN (1978) Resolution of dose-response toxicity data for chemicals requiring metabolic activation: example—vinyl chloride. Toxicol Appl Pharmacol 44:581–591.

    Article  PubMed  CAS  Google Scholar 

  • Gervasi PG, Citti L, del Monte M, Longo V, Benetti D (1985) Mutagenicity and chemical reactivity of epoxide intermediates of the isoprene metabolism and other structurally related compounds. Mutat Res 156:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Heck H d’A, Casanova M (1987) Isotope effects and their implications for the covalent binding of inhaled 3H-and 14C-formaldehyde in the rat nasal mucosa. Toxicol Appl Pharmacol 89:122–134.

    Article  CAS  Google Scholar 

  • Hemminki K (1984) Urinary excretion of formaldehyde in the rat. Chem-Biol Interact 48:243–248.

    Article  PubMed  CAS  Google Scholar 

  • IARC (1986) Tobacco Smoking, IARC Monogr Eval Carcinog Risk Hum 38:189–194.

    Google Scholar 

  • IARC (1987) Arsenic and arsenic compounds. IARC Monogr Eval Carcinog Risk Hum [Suppl] 7:100–106.

    Google Scholar 

  • Kreiling R, Laib RJ, Filser JG, Bolt HM (1986) Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. Arch Toxicol 58:235–238.

    Article  PubMed  CAS  Google Scholar 

  • Kreiling R, Laib RJ, Filser JG, Bolt HM (1987) Inhalation pharmacokinetics of 1,2-epoxybutene reveal species differences between rats and mice sensitive to butadiene-induced carcinogenesis. Arch Toxicol 61:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Lam CW, Casanova M, Heck H d’A (1985) Depletion of nasal mucosal glutathione by acrolein and enhancement of formaldehyde-induced DNA-protein cross-linking by simultaneous exposure to acrolein. Arch Toxicol 58:67–71.

    Article  PubMed  CAS  Google Scholar 

  • Maltoni C, Lefemine G (1975) Carcinogenicity assays of vinyl chloride: current results. Ann NY Acad Sci 246:195–224.

    Article  PubMed  CAS  Google Scholar 

  • Maltoni C, Conti B, Cotti G (1983) Benzene: a multipotential carcinogen. Am J Ind Med 4:589–630.

    Article  PubMed  CAS  Google Scholar 

  • Schepers G, Walk RA (1988) Cotinine determination by immunoassays may be influenced by other nicotine metabolites. Arch Toxicol 62:395–397.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Loeser E (1985) Species differences in the formation of butadiene monoxide from 1,3-butadiene. Arch Toxicol 57:222–225.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SL, Ball RT, Witorsch P (1987) Mathematical modelling of nicotine and cotinine as biological markers of environmental tobacco smoke exposure. Toxicol Lett 35:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Snyder CA, Sellakumar AR, James DJ, Albert RE (1988) The carcinogenicity of discontinuous inhaled benzene exposures in CD-I and C57 Bl/6 mice. Arch Toxicol 62:331–335.

    Article  PubMed  CAS  Google Scholar 

  • Starr TB, Buck RD (1984) The importance of delivered dose in estimating low-dose cancer risk from exposure to formaldehyde. Fundam Appl Toxicol 4:740–753.

    Article  PubMed  CAS  Google Scholar 

  • Starr TB, Gibson JE (1985) The mechanistic toxicology of formaldehyde and its implications for quantitative risk assessment. Ann Rev Pharmacol Toxicol 25:745–767.

    Article  CAS  Google Scholar 

  • Stommel P, Schöbel S, Müller G, Norpoth K (1987) Bestimmung des Benzolmetaboliten S-Phenylmercaptursäure im Harn von Benzol-exponierten Arbeitnehmern. Verh Dtsch Ges Arbeitsmed 27:289–292.

    Google Scholar 

  • Swenberg JA, Barrow CS, Boreiko CJ, Heck H d’A, Levine RJ, Morgan KT, Starr TB (1983) Non-linear biological responses to formaldehyde and their implications for carcinogenic risk assessment. Carcinogenesis 4:945–952.

    Article  PubMed  CAS  Google Scholar 

  • Tömqvist M, Kautiainen A, Gratz RN, Ehrenberg C (1988) Hemoglobin adducts in animals exposed to gasoline and diesel exhausts. J Appl Toxicol 8:159–170.

    Article  Google Scholar 

  • Van Duuren BL, Langseth L, Orris L, Teebor G, Nelson N, Kushner M (1966) Carcinogenicity of epoxides, lactones and peroxy compounds. JNCI 37:825–835.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bolt, H.M. (1989). Identification of the Effective Dose of Inhaled Toxicants: General and Specific Problems. In: Mohr, U., Bates, D.V., Dungworth, D.L., Lee, P.N., McClellan, R.O., Roe, F.J.C. (eds) Assessment of Inhalation Hazards. ILSI Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74606-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74606-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74608-6

  • Online ISBN: 978-3-642-74606-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics