Skip to main content

Signalling Elements in Higher Plants: Identification and Molecular Analysis of an Auxin-Binding Protein, GTP-Binding Regulatory Proteins and Calcium Sensitive Proteins

  • Conference paper
Signal Molecules in Plants and Plant-Microbe Interactions

Abstract

In eucaryotic cells external signals detected by receptors are translated into a limited repertoire of intracellular second messengers. Occupancy of these receptors initiates the production of active messengers, including the well studied cyclic adenosine monophosphate (cAMP) as well as the recently discovered messenger molecules that are derived from phosphoinositides such as arachidonic acid, inositol-l,4,5-triphosphate, and 1,2-diacylglycerol (for review see: Berridge 1986; Newton and Brown 1986; Boss and Morre 1989). These messengers are capable of regulating a vast array of physiological and biochemical processes either by direct interaction with distinct proteins or indirectly by activating enzymes which trigger conformational changes in the final target proteins. However, the number of second messengers in eucaryotic cells appears to be surprisingly small, indicating that most probably only a limited number of internal signal pathways are needed, albeit remarkably universally in all eucaryotes analyzed up to now, to transduce these signals to their final biological destination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashby WR (1956) An Introduction to Cybernetics. Wiley, New York.

    Google Scholar 

  • Barbier-Brygoo H, Ephritikine G, Klämbt D, Ghishlain M and Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86: 891–895

    Article  CAS  PubMed  Google Scholar 

  • Bates GW and Goldsmith MHM (1983) Rapid response of the plasma membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159. 231–237

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann Rev Biochem 56: 159–193

    Article  CAS  PubMed  Google Scholar 

  • Boss WF, Massel MO (1985) Polyphosphoinositides are present in plant tissue cells. Biochem Biophys Res Commun 132: 1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Boss WF and Morre DJ (1989) Second messengers in plant growth and development. Alan R Liss Inc, New York

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Ann Rev Biochem. 56: 395–433

    Article  CAS  PubMed  Google Scholar 

  • Chardin P (1988) The ras superfamily protein. Biochimie 70: 865–868

    Article  CAS  PubMed  Google Scholar 

  • Cheung WY (1979) Calmodulin plays a pivotalrole in cellular regulation. Science 207: 19–27

    Article  Google Scholar 

  • Davies PJ (1987) Plant hormones and their role in plant growth and development. Martinus Nijhoff Publishers, Kluwer Academic Publishers Group, Dordrecht

    Book  Google Scholar 

  • De Silva DLR, Cox RC, Hetherington AM and Mansfield TA (1985) Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid. New Phytol 101: 555–563

    Article  Google Scholar 

  • De Vos AM, Tong L, Milburn MV, Matias PD, Jancarik J, Noguchi S, Nishimura S, Miura K, Ohtsuka E, Kim KH (1988) Three- dimensional structure of an oncogene protein: catalytic domain of human c-Ha-ras p21. Science 239: 888–893

    Article  PubMed  Google Scholar 

  • Dohrmann U, Hertel R and Kowalik H (1978) Properties of auxin binding sites in different subcellular fractions from maize coleoptiles. Planta (Berl) 140: 97–106

    Article  CAS  Google Scholar 

  • Ephritikine G, Barbier-Brygoo H, Muller JF and Guern J (1987) Auxin effect on the transmembrane potential difference of wild type and mutant tobacco protoplasts exhibititng a differential sensitivity to auxin. Plant Physiol 83: 801–804

    Article  Google Scholar 

  • Ettlinger C and Lehle L (1987) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature (London) 331: 176–178

    Article  Google Scholar 

  • Hasunuma K and Funadera K (1987) GTP-binding proteins in green plant Lemna paucicostata. Biochem Biophys Res Comm 143: 908–912

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK and Wayne RO (1985) Calcium and plant development. Ann Rev Plant Physiol 36: 397–439

    Article  CAS  Google Scholar 

  • Hertel R, Thomson KSt and Russo VEA (1972) In vitro auxin binding to particulate cell fractions from corn coleopti les. Planta 107: 325–340

    Article  CAS  Google Scholar 

  • Hesse T, Feldwisch J, Balshüsemann D, Bauw G, Vandekerckhove J, Puype M, Löbler M, Klämbt D, Schell J and Palme K (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J, in press

    Google Scholar 

  • Key JL, Kroner P, Walker J, Hong JC, Ulrich TH, Ainley WM, Gantt JS and Nagao RT (1986) Auxin-regulated gene expression. Philos Trans R Soc Lond B Biol Sci 314: 427–440

    Article  CAS  PubMed  Google Scholar 

  • Libbenga KR, Maan AC, Van der Linde PCG and Mennes AM (1986) Auxin Receptors. In Hormones, receptors and cellular interactions in plants (Chadwick CM and Garrod DR, eds) pp 1–67 Cambridge University Press, Cambridge.

    Google Scholar 

  • Marre E, Lado P, Ferroni A and Ballarin-Denti A (1974) Transmembrane potential increase induced by benzyladenine and fusicoccin. Correlation with proton extrusion and cell enlargement. Plant Sci Lett 2: 257–265

    Article  CAS  Google Scholar 

  • Millner PA (1987) Are guanine nucleotide-binding proteins involved in regulation of thylakoid protein kinase activity? FEBS Lett 226: 155–160

    Article  CAS  Google Scholar 

  • Munro S and Pelham HRB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907

    Article  CAS  PubMed  Google Scholar 

  • Nelles A (1977) Short term effects of plant hormones on membrane permeability of dwarf coleoptile cells (Zea mays L.) in comparison with growth responses. Planta 137: 293–298

    Article  CAS  Google Scholar 

  • Newton RP and Brown EG (1986) The biochemistry and physiology of cyclic AMP in higher plants. In Hormones, receptors and cellular interactions in higher plants (Chadwick CM, Garrod DR, eds) pp 115–153. Cambridge University Press

    Google Scholar 

  • Palme K, Diefenthal T, Hesse T, Feldwisch J and Schell J (1989) Genes involved in plant differentiation: identification of gene families from Zea mays encoding auxin- binding proteins and the ras-related YPT-proteins. In Plant Gene Transfer (Beachy R and Lamb C, eds) Alan R Liss Inc, New York, in press

    Google Scholar 

  • Palme K, Diefenthal T, Sander C, Vingron M and Schell J (1989b) Identification of guanine-nucleotide binding proteins in plants: structural analysis and evolutionary comparison of the ras-related YPT-gene family from Zea mays. In The guanine-nucleotide binding proteins: common structural and evolutionary principles (Bosch L, Kraal B, Parmeggiani A, eds) Plenum Press, New York, in press

    Google Scholar 

  • Pelham HRB (1988) Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 7: 913–918

    CAS  PubMed  Google Scholar 

  • Pelham HRB, Hardwick KG, Lewis MJ (1988) Sorting of soluble ER proteins in yeast. EMBO J 7: 1757–1762

    CAS  PubMed  Google Scholar 

  • Poovaiah BW and Reddy ASN (1987) Calcium messenger system in plants. CRC Critical Reviews in Plant Sciences 6: 47–103

    Article  CAS  PubMed  Google Scholar 

  • Ray PM (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol 59: 594–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray PM and Dohrmann U (1977) Characterization of naphtha- leneacetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol 59: 357–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts DM, Lukas TJ and Watterson DM (1986) Structure, function, and mechanism of action of calmodulin. CRC Critical Reviews in Plant Sciences 4: 311–339

    Article  CAS  Google Scholar 

  • Roux SJ and Serlin BS (1987) Cellular mechanisms controlling light-stimulated gravitropism: role of calcium. CRC Critical Reviews in Plant Sciences 5: 205–237

    Article  CAS  PubMed  Google Scholar 

  • Rubery PH (1981) Auxin receptors. Ann Rev Plant Physiol 32: 569–596

    Article  CAS  Google Scholar 

  • Shannon CE and Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Steeves TA and Sussex I (1988) Patterns of Plant Development.2nd Edition. Cambridge University Press, New York

    Google Scholar 

  • Theologis A (1986) Rapid gene regulation by auxin. Ann Rev Plant Physiol 37: 407–438

    Article  CAS  Google Scholar 

  • Tillmann U, Viola G, Kayser B, Hesse T, Palme K, Löbler M and Klämbt D (1989) cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J, in press

    Google Scholar 

  • Venis MA (1985) Hormone binding sites in plants. Longman Ltd, New York, London

    Google Scholar 

  • Walton DJ and Ray PM (1981) Evidence for receptor functions of auxin binding sites in Maize. Red light inhibition of mesocotyl elongation and auxin binding. Plant Physiol 68: 1334–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palme, K. et al. (1989). Signalling Elements in Higher Plants: Identification and Molecular Analysis of an Auxin-Binding Protein, GTP-Binding Regulatory Proteins and Calcium Sensitive Proteins. In: Lugtenberg, B.J.J. (eds) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74158-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74158-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74160-9

  • Online ISBN: 978-3-642-74158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics