Skip to main content

Dynamic Variations of the Extracellular Space in the Central Nervous System

  • Conference paper
Regulatory Mechanisms of Neuron to Vessel Communication in the Brain

Part of the book series: NATO ASI Series ((ASIH,volume 33))

Summary

During neuronal hyperactivity, including repetitive stimulations, applications of excitatory amino acids, epilepsy, spreading depressions and anoxia, large changes in the concentration of extracellular ion occur. Such changes are accompanied by changes in the extracellular space (ES) size, which can shrink by up to 60%. The changes in ES size can be rapid, localized and also rapidly reversible. Several mechanisms can account for the ES changes: KC1 uptake in glia, the glial spatial buffering, NaCl uptake into neurons, metabolic increase of the intracellular osmolarity. The observed ES changes may have a number a consequences, among which the maintenance of neuronal functioning appears to be the most important.

To whom correspondence should be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR, Kado RT, Didio J (1962) Impedance measurements in brain tissue of animals using microvolt signals. Exp Neurol 5: 47–66.

    Article  PubMed  CAS  Google Scholar 

  • Ammann D (1986) Ion-selective micro-electrodes: priciples, design and application. Springer-Verlag Berlin Heidelberg New-York Tokyo pp. 346.

    Google Scholar 

  • Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol London 382: 159–174.

    PubMed  CAS  Google Scholar 

  • Boyle PJ, Conway EJ (1941) Potassium accumulation in muscle and associated changes. J Physiol London 100: 1–63.

    PubMed  CAS  Google Scholar 

  • Coles JA, Orkand RK, Yamate CL, Tsacopoulos M (1986) Free concentration of Na, K, and CI in the retina of the honeybee drone: stimulus-induced redistribution and homeostasis. Ann NY Acad Sci 481: 303–316.

    Article  PubMed  CAS  Google Scholar 

  • Cragg B (1979) Brain extracellular space fixed for electron microscopy. Neurosci Lett 321: 301–306.

    Article  Google Scholar 

  • Dietzel I, Heinemann U (1986) Dynamic variations of the brain cell microenvironment in relation to neuronal hyperactivity. Ann NY Acad Sci 481: 72–86.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40: 432–439.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982) Stimulus induced changes in extracellular Na+ and Cl¯ concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Somjen GG (1981) Calcium dependence and synaptic transmission in the hippocampal slice. Brain Res 207: 218–222.

    Article  PubMed  CAS  Google Scholar 

  • Freygang jr WH, Landau WM (1955) Some relations between resistivity and electrical activity in cerebral cortex of cat. J cell and comp Physiol 45: 377–392.

    Google Scholar 

  • Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol London 335: 353–374.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR, Nicholson C (1983) Changes of extracellular potassium activity induced by electric current through brain tissue in the rat. J Physiol London 335: 375–392.

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108: 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ, Zeuthen T (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113: 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. In: Advances in Neurology 44, Delgado Escueta AV, Ward jr AA, Woodbury DM, Porter RJ (eds). Raven Press New-York pp. 641–661.

    Google Scholar 

  • Heinemann U, Lux HD (197 5) Undershoots following stimulus induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res 93: 63–76.

    Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cats. Brain Res 120: 231–249.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cats. Exp Brain Res 27: 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Pumain R (1980) Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp Brain Res 40: 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (1986) Potassium transport in astrocytes and neurons in primary cultures. Ann NY Acad Sci 481: 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1967) The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J Gen Physiol 50: 287–302.

    Article  Google Scholar 

  • Hortsmann E, Meves H ( 1959 Die feinstructur des molecularen rindengrues und irhe physiologische bedeutung. Z Zellforsch 49: 569–604

    Article  Google Scholar 

  • Hounsgaard J, Nicholson C (1983) Potassium accumulation around individual Purkinje cells in cerebellar slices from the guineapig. J Physiol London 340: 359–388.

    PubMed  CAS  Google Scholar 

  • Jefferys JGR (1981) Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. J Physiol 319: 143–152.

    PubMed  CAS  Google Scholar 

  • Kraig RP, Nicholson C. (1978) Extracellular ionic variations during spreading depression. Neuroscience 3: 1045–1059.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, and Morris ME (1972) Extracellular K+ activity and slow potential changes in spinal cord and medulla. Can J Physiol Pharmacol 50: 1214–1217.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann A, Hagberg H, Lazarewicz JW, Jacobson I, Hamberger A (1986) Alterations in extracellular amino acids and Ca2+ following excitotoxin administration and during status epilepticus. Adv Exp Med Biol 203: 363–373.

    PubMed  CAS  Google Scholar 

  • Lemenkiihler A, Caspers Hf Kersting U (1985) Relations between DC potentials, extracellular ion activities, and extracellular volume fraction in the cerebral cortex with changes in PCO2. In: Ion measurements in biology and Medecine. Kessler M, Harrison DK, Hoper J (eds). Springer-verlag Berlin pp 199–205.

    Google Scholar 

  • Levin VA, Fenstermacher JD, Patlak CS (1970) Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am J Physiol 219: 1528–1533.

    PubMed  CAS  Google Scholar 

  • Lothman EW, Somjen GG (1976) Function of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. Electroenceph Clin Neurophysiol 41: 253–267.

    Article  PubMed  CAS  Google Scholar 

  • Louvel J, Heinemann U (1980) Diminution de la concentration extracellulaire des ions calcium lors des crises 6pileptiques focales induites par l’oenanthotoxine dans le cortex du chat. C R Acad Sci Paris 291: 997–1000.

    CAS  Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: Advances in Neurology. Delgado Escueta AV, Ward jr AA, Woodbury DM, Porter RJ (eds). Raven Press New- York 44: 619–639.

    Google Scholar 

  • Mac Dermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.

    Article  Google Scholar 

  • Mc Laughlin SGA, Szabo G, Eisenman G (1971) Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol 58: 667–668.

    Google Scholar 

  • Morris ME, Krnjevic R (1981) Slow diffusion of Ca2+ in the rat’s hippocampus. Can J Physiol Pharmacol 59: 1022–1025.

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (1988) Potassium conductance in Miiller cells of fish. Glia 1: 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C (1980) Dynamics of the brain cell microenvironment. Neurosci Res Prog Bull 18: 1–113.

    Google Scholar 

  • Nicholson C, ten Bruggencate G, Stockle H, Steinberg R (1978) Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J Neurophysiol 41: 1026–1039.

    PubMed  CAS  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol London 321: 225–257.

    PubMed  CAS  Google Scholar 

  • Nicholson C, Phillips JM, Gardner-Medwin AR (1979) Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res 169: 580–584.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1986) The migration of substances in the neuronal micorenvironment. Ann NY Acad Sci 481: 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1987) Calcium diffusion in the brain cell microenvironment. Can J Physiol Pharmacol 65: 1086–1091.

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK, Dietzel I, Coles JA (1984) Light-induced changes in extracellular volume in the retina of the drone, apis mellifera. Neurosci lett 45: 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Pumain R (1988) Calcium ions. In: Neuromethods: The neuronal microenvionment, Boulton AA, Baker BA, Walz W (eds). The Humana Press Clifton pp. 589–650.

    Google Scholar 

  • Pumain R, Heinemann U (1985) Stimulus- and amino-acid induced calcium and potassium changes in rat neocortex. J Neurophysiol 53: 1–16.

    PubMed  CAS  Google Scholar 

  • Pumain R, Kurcewicz If Louvel J (1983) Fast extracellular calcium transients: Involvement in epileptic processes. Science 222: 177– 179.

    Google Scholar 

  • Pumain R, Kurcewicz I, Louvel J (1987) Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can J Physiol Pharmacol 65: 1067–1077.

    Article  PubMed  CAS  Google Scholar 

  • Pumain R, Menini C, Heinemann U, Louvel J, Silva Barrat C (1985) Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp Neurol 89: 250–258.

    Article  PubMed  CAS  Google Scholar 

  • Purves RD (1979) The physics of iontophoretic pipettes. J Neurosci Meth PI: 165–178.

    Google Scholar 

  • Ransom BR, Yamamate CL, Connors BW (1985) Activity dependent shrinkage of the extracellular space in rat optic nerve: a developmental study. J Neurosci 5: 532–535.

    PubMed  CAS  Google Scholar 

  • Siesjo BK, Wieloch T (1986) Epileptic brain damage: pathophysiology and neurochemical pathology. In: Adv Neurol Delgado-Escueta AV, Ward Jr AA, Woodbury DM, Porter RJ (eds). Raven Press New York 44: 813–847.

    Google Scholar 

  • Simon W, Ammann D, Anker P, Oesch U, Band DM (1984) Ion-selective electrodes and their clinical application in the continuous ion monitoring. Ann NY Acad Sci 428: 279–299.

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Ann Rev Physiol 37: 163–190.

    Article  CAS  Google Scholar 

  • Somjen GG (1980) Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in cerebral cortex. J Neurophysiol 44: 617–632.

    PubMed  CAS  Google Scholar 

  • Sykova E (1987) Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume. Can J Physiol Pharmacol 65: 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  • Sykova E, Shirayev B, Kriz N, Vyklycky L (1976) Accumulation of extracellular potassium in the spinal cord of frog. Brain Res. 106: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Dudek FE (1982) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52: 126–142.

    Google Scholar 

  • Torack RM (1965) The extracellular space of rat brain following perfusion with glutaraldehyde and hydroxyadipaldehyde. Z Zellforsch Mikroskop Anat 66: 352–364.

    Article  CAS  Google Scholar 

  • Urbanics RE, Leninger-Follert E, Lubbers DW (1978) Time course of changes of extracellular Hf and K+ during and after direct electrical stimulation of the brain cortex. Pflg Arch 378: 47–53.

    Article  CAS  Google Scholar 

  • Van Harreveld A (1972) The extracellular space in the vertebrate central nervous system. In: The structure and function of the nervous tissue, Vol 4. Bourne GH (ed). Academic Press New York pp 447–511.

    Google Scholar 

  • Van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze substitution. J Cell Biol 25: 117–137.

    Article  Google Scholar 

  • Van Harreveld A, Murphy T, Nobel KW (1963) Specific impedance of rabbits’s cortical tissue. Am J Physiol 205: 203–207.

    Google Scholar 

  • Vyskocil F, Kriz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39: 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Walz W (1987) Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65: 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  • Waltz W, Hertz L (1983) Intracellular ion changes of astrocytes in response to extracellular potassium. J Neurocsi Res 10:411– 423.

    Google Scholar 

  • Wieloch T, Harris RJ, Symon L, Siesjo BK (1984) Influence on severe hypoglycemia on brain extracellular- calcium and potassium activities, energy and phospholipid metabolism. J Neurochem 43: 160–168.

    Article  PubMed  CAS  Google Scholar 

  • Yim CC, Krnjevic K, Dalkara T (1986) Ephaptically generated potentials in CA1 neurons of rat’s hippocampus in situ. J Neurophysiol 56: 99–122.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pumain, R., Louvel, J., Kurcewicz, I. (1989). Dynamic Variations of the Extracellular Space in the Central Nervous System. In: Battaini, F., Govoni, S., Magnoni, M.S., Trabucchi, M. (eds) Regulatory Mechanisms of Neuron to Vessel Communication in the Brain. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74152-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74152-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74154-8

  • Online ISBN: 978-3-642-74152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics