Skip to main content
Log in

Die Feinstruktur des molekularen Rindengraues und ihre physiologische Bedeutung

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The first part of the paper deals with the fine histology of the CNS as revealed by electron microscopy. The results of electron microscopic examinations of the thin ventricular walls of Scylliorhinus are described. They are in accordance with the findings in the nervous tissue of other animals. It could be shown that in the CNS of vertebrates:

  1. 1.

    There is only a very small extracellular space of about 200 Å width between two adjacent cells or cell processes. The close packing of cells and the absence of any gaps is made possible by a mutual distortioning and flattening of adjacent cell processes as well as by bundling of small fibres.

  2. 2.

    The percentage of extracellular space increases with decreasing diameter of fibres. If the mean diameter of the fibres is about 0,08–0,1 μ, the percentage of extracellular space is about 30% of the total volume, whereas if the mean diameter of the fibres is about 1 μ, it is only 3,5%. According to the calculated relationship between fibre diameter and amount of extracellular space the measurements in electron micrographs show, that in nervous tissue the mean percentage of extracellular space does not exceed 5% of the total volume.

  3. 3.

    The diameter of the smallest fibres, which could be found, was about 0,2 μ.

  4. 4.

    It is not yet possible to discriminate between unmyelinated neurites and dendrites in electron micrographs. Most of the numerous lamellae-like and very small processes seem to be final branchings of glial cell processes.

The second part of the paper deals with functional implications of the electron microscopic findings and with their relation to neurophysiology. The following results were obtained:

  1. 1.

    The specific electrical resistance of nervous tissue was calculated using the values for extracellular space obtained by measurements of electron micrographs. There is a satisfactory accordance between the calculated values and the experimentally obtained data.

  2. 2.

    The morphological findings concerning the percentage of extracellular space and amount of glia in the nervous tissue allow a calculation of the K+ content of the brain, provided that the intra- and extracellular concentrations of K+ are known. The calculated value is in accordance with direct measurements of the K+ content of the brain.

  3. 3.

    In spite of the extreme smallness of the extracellular space ephaptic spreading of excitation on resting cells is very unlikely to occur. Under physiological conditions it is hindered by peculiar properties of the dendritic membranes, by the small amplitude of that portion of the action potential, which can be measured extracellularly, and by the comparatively high resistance of the cell membranes. It cannot be excluded, however, that excited cells may influence the thresholds and firing frequencies of adjacent cells.

  4. 4.

    The known measurements of after-potentials give no indication that the excitation of central neurones leads to an accumulation of K+-ions in the small extracellular space. It is quite possible that the composition of the extracellular fluid is kept constant by the glial cells.

  5. 5.

    Finally the implications of the fiber measurements are discussed with regard to general aspects of information transfer, synaptic transmission, spreading of potentials and neuronal metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Allen, J. N.: Extracellular space in the central nervous system. Arch. Neurol. Psychiat. (Chicago) 73, 241–248 (1955).

    Google Scholar 

  • Apathy, St. v.: Das leitende Element des Nervensystems und seine topographischen Beziehungen zu den Zellen. Mitt. zool. Stat. Neapel 12, 495–748 (1897).

    Google Scholar 

  • Araki, T., and T. Otani: Response of single motoneurones to direct stimulation in toad's spinal cord. J. Neurophysiol. 18, 472–485 (1955).

    Google Scholar 

  • Araki, T., T. Otani and T. Furukawa: The electrical activities of single motoneurones in toad's spinal cord, recorded with intracellular electrodes. Jap. J. Physiol. 3, 254–267 (1953).

    Google Scholar 

  • Ariens Kappers, J.: On the presence of periodic acid Schiff positive substances in the paraphysis cerebri, the chorioid plexuses and the neuroglia of Ambystoma mexicanum. Experientia 12, 187–189 (1957).

    Google Scholar 

  • Arvanitaki, A.: Effects evoked in an axon by the activity of a contiguous one. J. Neurophysiol. 5, 89–108 (1942a).

    Google Scholar 

  • —: Interactions électriques entre deux cellules nerveuses contigues. Arch. int. Physiol. 52, 381–407 (1942b).

    Google Scholar 

  • Bairati, A., e E. Bartoli: Ricerche morfologiche ed istochimiche sulla glia del nevrasse di vertebrati. II. 88-01. Z. Zellforsch. 42, 273–304 (1955).

    Google Scholar 

  • Bairati, A., B. Pernis and G. Frigerio: High angle X-ray diffraction and chemical studies on the nature of fibrous glia. Experientia 12, 383–385 (1957).

    Google Scholar 

  • Bakay, L.: Dynamic aspects of the blood-brain barrier. In D. Richter, Metabolism of the nervous system, p. 136–152. London: Pergamon Press 1957.

    Google Scholar 

  • Bethe, A.: Das Centralnervensystem von Carcinus maenas. II. Teil. Arch. mikr. Anat. 51, 382–452 (1898).

    Google Scholar 

  • —: Allgemeine Anatomie und Physiologie des Nervensystemes. Leipzig: Georg Thieme 1903.

    Google Scholar 

  • BoK, S. T.: A quantitative analysis of the structure of the cerebral cortex. Verh. kon. Akad. Wet., Sect. II 35, 1–55 (1936).

    Google Scholar 

  • Bremer, F.: Le tétanos strychnique et le mécanisme de la synchronisation neuronique. Arch. int. Physiol. 51, 211–260 (1941).

    Google Scholar 

  • Brock, L. G., J. S. Coombs and J. C. Eccles: The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952).

    Google Scholar 

  • —: Intracellular recording from antidromically activated motoneurones. J. Physiol. (Lond.) 122, 429–461 (1953).

    Google Scholar 

  • Burns, B. D.: The mammalian cerebral cortex. London: E. Arnold 1958.

    Google Scholar 

  • Caesar, R., G. A. Edwards and H. Ruska: Architecture and nerve supply of mammalian smooth muscle tissue. J. biophys. biochem. Cytol. 3, 867–878 (1957).

    Google Scholar 

  • Cajal, S. R.: Die Neuronenlehre. In Bumke-Foersters Handbuch der Neurologie, Bd. 1. Berlin: Springer 1935.

    Google Scholar 

  • - Histologie du système nerveux. 1899. Zit. nach der Ausgabe Madrid 1952.

  • Clare, M. H., and G. H. Bishop: Properties of dendrites; apical dendrites of the cat cortex. Electroenceph. clin. Neurophysiol. 7, 85–98 (1955).

    Google Scholar 

  • Cole, K. S.: Electric impedance of suspensions of spheres. J. gen. Physiol. 12, 29–36 (1928).

    Google Scholar 

  • —: Permeability and impermeability of cell membranes for ions. Cold Spr. Harb. Symp. quant. Biol. 8, 110–122 (1940).

    Google Scholar 

  • Coombs, J. S., J. C. Eccles and P. Fatt: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325 (1955).

    Google Scholar 

  • Crile, G. W., H. R. Hosmer and A. F. Rowland: The electrical conductivity of animal tissues under normal and pathological conditions. Amer. J. Physiol. 60, 59–106 (1922).

    Google Scholar 

  • Dempsey, E. W.: Some electron microscope observations on the neuropil and its relation to the blood-brain barrier. III. Intern. Sympos. Neurochemistry Strasbourg 1958. Im Druck.

  • Dempsey, E. W., and G. B. Wislocki: An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrat as a vital stain. J. biophys. biochem. Cytol. 1, 245–256 (1955).

    Google Scholar 

  • Eccles, J. C.: An electrical hypothesis of synaptic and neuromuscular transmission. Ann. N.Y. Acad. Sci. 47, 429–455 (1946).

    Google Scholar 

  • —: The physiology of nerve cells. Baltimore: Johns Hopkins Press 1957.

    Google Scholar 

  • Eccles, J. C., P. Fatt and K. Koketsu: Cholinergic and inhibitory synapses in a pathway from motoraxon collaterals to motoneurones. J. Physiol. (Lond.) 126, 524–562 (1954).

    Google Scholar 

  • Eccles, J. C., and J. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B 148, 38–56 (1958).

    Google Scholar 

  • Economo, C. v., u. G. N. Koskinas: Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin u. Wien: Springer 1925.

    Google Scholar 

  • Edwards, G. A., H. Ruska and E. de Harven: Electron microscopy of peripheral nerves and neuromuscular functions in the wasp leg. J. biophys. biochem. Cytol. 4, 107–114 (1958a).

    Google Scholar 

  • —: Neuromuscular functions in flight and tympanal muscles of the cicada. J. biophys. biochem. Cytol. 4, 251–256 (1958b).

    Google Scholar 

  • - Elliott, K. A. C.: The chemical pathology of fluids and electrolytes. III. Internat. Sympos. of Neurochemistry Strasbourg 1958. Im Druck.

  • Elliott, K. A. C., and I. H. Heller: Metabolism of neurons and glia. In D. Richter, Metabolism of the nervous system, p. 286–290. London: Pergamon Press 1957.

    Google Scholar 

  • Elliott, K. A. C., and H. Jasper: Measurement of experimentally induced brain swelling and shrinkage. Amer. J. Physiol. 157, 122–129 (1949).

    Google Scholar 

  • Engström, H., and C. Rytzner: The structure of taste buds. Acta oto.-laryng. (Stockh.) 46, 361–367 (1956).

    Google Scholar 

  • Engström, H., and F. Sjöstrand: The structure and innervation of the cochlear hair cells in organ of Corti. Acta oto-laryng. (Stockh.) 44, 490–501 (1954).

    Google Scholar 

  • Engström, H., and J. Wehsäll: The structure of the organ of Corti. I. The outer hair cells. Acta oto-laryng. (Stockh.) 43, 1–10 (1953a).

    Google Scholar 

  • —: II. Supporting structures and their relations to sensory cells and nerve endings. Acta oto-laryng. (Stockh.) 43, 323–334 (1953b).

    Google Scholar 

  • Farquahr, M. G., and J. F. Hartmann: Neurological structure and relationships as revealed by electron microscopy. J. Neuropath, exp. Neurol. 16, 18–39 (1957).

    Google Scholar 

  • Fatt, P.: Electric potentials occurring around a neurone during its antidromic activation. J. Neurophysiol. 20, 27–60 (1957).

    Google Scholar 

  • Fernández-Morán, H., and J. B. Finean: Electron microscope and low angle-X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol. 3, 725–748 (1957).

    Google Scholar 

  • Fleischhauer, K.: Untersuchungen am Ependym des Zwischen- und Mittelhirns der Landschildkröte (Testudo graeca). Z. Zellforsch. 46, 729–767 (1957).

    Google Scholar 

  • —: Über die Feinstruktur der Faserglia. Z. Zellforsch. 47, 548–556 (1958).

    Google Scholar 

  • Folch-Pi, J., and F. N. Le Baron: Chemical composition of the mammalian nervous system. In D. Richter, Metabolism of the nervous system, p. 67–71. London: Pergamon Press 1957.

    Google Scholar 

  • Foster, J. M.: Enzymatic studies of mitochondria and other constituents of lobster and squid nerve fibres. J. Neurochem. 1, 84–90 (1956).

    Google Scholar 

  • Frankenhaeuser, B., and A. L. Hodgkin: The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol. (Lond.) 131, 341–376 (1956).

    Google Scholar 

  • Freygang, W. H.: An analysis of extracellular potentials from single neurons in the lateral geniculate nucleus of the cat. J. gen. Physiol. 41, 543–564 (1958).

    Google Scholar 

  • Freygang, W. H., and W. M. Landau: Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J. cell. comp. Physiol. 45, 377–392 (1955).

    Google Scholar 

  • Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems. I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24, 575–587 (1924).

    Google Scholar 

  • Friede, R.: Der quantitative Anteil der Glia an der Cortexentwicklung. Acta anat. (Basel) 20, 290–296 (1954).

    Google Scholar 

  • Gasser, H. S.: Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J. gen. Physiol. 38, 709–728 (1955).

    Google Scholar 

  • Gerard, R. W.: The interaction of neurones. Ohio J. Sci. 41, 160–172 (1941).

    Google Scholar 

  • Gerard, R. W., and B. Libet: The control of normal and “convulsive” brain potentials. Amer. J. Psychiat. 96, 1125–1153 (1940).

    Google Scholar 

  • Geren, B. B.: The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res. 7, 558–562 (1954).

    Google Scholar 

  • Geren, B. B., and F. O. Schmitt: The structure of the Schwann cell and its relation to the axon in certain invertebrate nerve fibres. Proc. nat. Acad. Sci. (Wash.) 40, 863–870 (1954).

    Google Scholar 

  • Grafstein, B.: Mechanism of spreading cortical depression. J. Neurophysiol. 19, 154–171 (1956).

    Google Scholar 

  • Grundfest, H.: Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol. Rev. 37, 337–361 (1957).

    Google Scholar 

  • Haggar, R. A., and M. L. Barr: Quantitative data on the size of synaptic end-bulbs in the cat's spinal cord. J. comp. Neurol. 93, 17–35 (1950).

    Google Scholar 

  • Harreveld, A. van: Changes in volume of cortical neuronal elements during asphyxiation. Amer. J. Physiol. 191, 233–242 (1957).

    Google Scholar 

  • Harreveld, A. van, and S. Ochs: Cerebral impedance changes after circulatory arrest. Amer. J. Physiol. 187, 180–192 (1956).

    Google Scholar 

  • Harhison, G. A.: Chemical methods in clinical medicine, 3. edit., p. 423. London: J. & A. Churchill 1947.

    Google Scholar 

  • Haug, H.: Remarks on the determination and significance of the gray cell coefficient. J. comp. Neurol. 104, 473–492 (1956).

    Google Scholar 

  • Hering, E.: Beiträge zur allgemeinen Nerven- und Muskelphysiologie. IX. Über Nervenreizung durch den Nervenstrom. S.-B. Akad. Wiss. Wien 85, 237–275 (1882).

    Google Scholar 

  • Hess, A.: The ground substance of the central nervous system revealed by histochemical staining. J. comp. Neurol. 98, 69–92 (1953).

    Google Scholar 

  • Hild, W.: Observations on neurons and neuroglia from the area of the mesencephalic fifth nucleus of the cat in vitro. Z. Zellforsch. 47, 127–146 (1957).

    Google Scholar 

  • Hild, W., J. J. Chang and I. Tasaki: Electrical responses of astrocytic glia from the mammalian central nervous system cultivated in vitro. Expeiientia (Basel) 14, 220–221 (1958).

    Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60 (1955).

    Google Scholar 

  • Hodgkin, A. L., A. F. Huxley and B. Katz: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 424–448 (1952).

    Google Scholar 

  • Horstmann, E.: Die Faserglia des Selachiergehirns. Z. Zellforsch. 39, 588–617 (1954).

    Google Scholar 

  • —: Zur Frage der Struktur markhaltiger zentraler Nervenfasern. Z. Zellforsch. 45, 18–30 (1956).

    Google Scholar 

  • —: Die Struktur der molekularen Schichten im Gehirn der Wirbeltiere. Naturwiss. 44, 448 (1957).

    Google Scholar 

  • - Über die Frage der Grundsubstanz im Zentralnervensystem. Verh. anat. Ges. 1958.

  • Kaieda, J.: Biochemische Untersuchungen des Labyrinthwassers und der Cerebrospinalflüssigkeit der Haifische. Hoppe-Seylers Z. physiol. Chem. 188, 193–202 (1930).

    Google Scholar 

  • Katz, B., and O. H. Schmitt: Electric interaction between two adjacent nerve fibres. J. Physiol. (Lond.) 97, 471–488 (1940).

    Google Scholar 

  • Konishi, K.: Interaction between myelinated nerve fibres under nearly physiological conditions. Part I and II. Jap. J. Physiol. 5, 93–108 (1955).

    Google Scholar 

  • Kulenkampff, H.: Das Verhalten der Neuroglia in den Vorderhörnern des Rückenmarks der weißen Maus unter dem Reiz physiologischer Tätigkeit. Z. Anat. Entwickl.-Gesch. 116, 304–312 (1952).

    Google Scholar 

  • Kulenkampff, H., u. E. Wustenfeld: Funktionsbedingte Veränderung der Kerngröße von Gliazellen im Grau des Rückenmarkes der weißen Maus. Z. Anat. Entwickl.-Gesch. 118, 97–101 (1954).

    Google Scholar 

  • Ladman, A. J.: The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J. biophys. biochem. Cytol. 4, 459–466 (1958).

    Google Scholar 

  • Leao, A. A. P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Google Scholar 

  • Lehmann, H. J.: Die Nervenfaser. In v. Möllendorff-Bargmanns Handbuch der mikroskopischen Anatomie, Bd. IV/4, S. 1–186. 1959. Im Druck.

  • Lorenzo, A. J. de: Electron microscopic observations of the olfactory mucosa and olfactory nerve. J. biophys. biochem. Cytol. 3, 839–850 (1957).

    Google Scholar 

  • —: Electron microscopic observations on the taste buds of the rabbit. J. biophys. biochem. Cytol. 4, 143–150 (1958).

    Google Scholar 

  • Luft, I. H.: The fine structure of the electric organ of the electric eel and torpedo ray. J. biophys. biochem. Cytol. 2, Suppl., 229–232 (1956).

    Google Scholar 

  • Luse, S.: Electron microscopic observations of the central nervous system. J. biophys. biochem. Cytol. 2, 531–542 (1956).

    Google Scholar 

  • Manery, J. F., and W. F. Bale: Na24 and P32 in tissues. Amer. J. Physiol. 132, 215–231 (1941).

    Google Scholar 

  • Manery, J. F., and L. F. Haege: Cl38 in tissues. Amer. J. Physiol. 134, 83–93 (1941).

    Google Scholar 

  • Maxwell, J. C.: Lehrbuch der Electricität und des Magnetismus, Bd. I, § 314. Berlin: Springer 1883.

    Google Scholar 

  • Mönckeberg, G., u. A. Bethe: Die Degeneration der markhaltigen Nervenfasern der Wirbeltiere unter hauptsächlicher Berücksichtigung des Verhaltens der Primitivfibrillen. Arch. mikr. Anat. 54, 135–183 (1899).

    Google Scholar 

  • Mountcastle, V. B., P. W. Davies and A. L. Berman: Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J. Neurophysiol. 20, 374–407 (1957).

    Google Scholar 

  • Newman, S. B., E. Borysko and M. Swerdlow: New sectionning techniques for light and electron microscopy. Science 110, 66–68 (1949).

    Google Scholar 

  • Niessing, K.: Zellreaktionen der Makroglia bei Narkose. Z. mikr. anat. Forsch. 56, 173–189.

  • Niessing, K., u. W. Vogell: Das elektronenoptische Bild der sogenannten Grundsubstanz der Hirnrinde. Z. Naturforsch. 12b, 641–646 (1957).

    Google Scholar 

  • Nissl, F.: Die Neuronenlehre und ihre Anhänger. Jena: Gustav Fischer 1903.

    Google Scholar 

  • Oksche, A.: Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z. Zellforsch. 48, 74–129 (1958).

    Google Scholar 

  • Palade, G. E.: Electron microscope observations of interneuronal and neuromuscular synapsis. Anat. Rec. 118, 335–336 (1954).

    Google Scholar 

  • Palay, S. L.: Synapses in the centra: nervous system. J. biophys. biochem. Cytol. 2, Suppl., 193–202 (1956).

    Google Scholar 

  • Phillips, C. G.: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol. 41, 58–69 (1956).

    Google Scholar 

  • Quilliam, T. A.: New problems in the functional activity of Pacinian corpuscle. J. biophys. biochem. Cytol. 4, 341–342 (1958).

    Google Scholar 

  • Rajewsky, B.: Biophysikalische Grundlagen der Ultrakurzwellen-Wirkung im lebenden Gewebe. In Dänzer, H., H. E. Hollmann, B. Rajewsky u. a.: Ultrakurzwellen in ihren medizinisch-biologischen Anwendungen, S. 77–190. Leipzig: Georg Thieme 1938.

    Google Scholar 

  • Rebhan, I.: Der Grauzellkoeffizient der menschlichen Hirnrinde. Berechnungen nach dem Zahlenmaterial v. Economos. I. Teil: Schichten und Areale. Acta anat. (Basel) 27, 361–386 (1956).

    Google Scholar 

  • Richardson, K. G.: Electron microscopic observations on the myenteric plexuses with the special reference to smooth muscle innervation. J. Anat. (Lond.) 91, 608 (1957).

    Google Scholar 

  • Robertis, E. D. P. de: Submicroscopic changes of the synapse after nerve section in the acoustic ganglion of the guinea pig. An electron microscope study. J. biophys. biochem. Cytol. 2, 503 (1956).

    Google Scholar 

  • Robertis, E. D. P. de., and H. S. Bennett: Some features of the submicroscopic morphology of synapses in frog and earthworm. J. biophys. biochem. Cytol. 1, 47–58 (1955).

    Google Scholar 

  • Robertis, E. D. P. de, and C. M. Franchi: Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J. biophys. biochem. Cytol. 2, 307, 318 (1956).

    Google Scholar 

  • Robertis, E. D. P. de, and A. Vaz Ferreira: Changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J. biophys. biochem. Cytol. 3, 611–614 (1957).

    Google Scholar 

  • - Robertis, E. D. P. de, H. M. Gerschenfeld and F. Wald: Some aspects of glia functions as revealed by electron microscopy. IV. Internat. Kongr. für Elektronenmikroskopie, Berlin 1958.

  • Robertson, J. D.: The ultrastructure of adult vertebrate peripheral myelinated nerve fibres in relation to myelinogenesis. J. biophys. biochem. Cytol. 1, 271–278 (1955).

    Google Scholar 

  • —: The ultrastructure of nodes of Ranvier in frog nerve fibres. J. Physiol. (Lond.) 137, P. 8–9 (1957).

    Google Scholar 

  • Rushton, W. A. H.: A theory of the effects of fibre size in medullated nerve. J. Physiol. (Lond.) 115, 101–122 (1951).

    Google Scholar 

  • Schultz, R., E. C. Berkowitz and D. C. Pease: The electron microscopy of the lamprey spinal cord. J. Morph. 98, 251–273 (1956).

    Google Scholar 

  • Schultz, R., E. A. Maynard and D. C. Pease: Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Amer. J. Anat. 100, 369–408 (1957).

    Google Scholar 

  • Shanes, A. M.: Factors in nerve functioning. Fed. Proc. 10, 611–621 (1951).

    Google Scholar 

  • —: The U wave and afterpotentials in cardiac muscle: panel discussion. Ann. N.Y. Acad. Sci. 65, 943–948 (1957).

    Google Scholar 

  • —: Electrochemical aspects of physiological and pharmacological action in excitable cells. Part II. The action potential and excitation. Pharmacol. Rev. 10, 165–273 (1958).

    Google Scholar 

  • Shariff, G. A.: Cell counts in the primate cerebral cortex. J. comp. Neurol. 98, 381–400 (1953).

    Google Scholar 

  • Sholl, D. A.: Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. (Lond.) 87, 387–406 (1953).

    Google Scholar 

  • —: The superficial areas of the perikarya and dendrites of cortical neurones in the cat. J. Physiol. (Lond.) 137, P 29 (1957).

    Google Scholar 

  • Skoglund, C. R.: Transsynaptic and direct stimulation of postfibres in the artificial synapse formed by severed mammalian nerve. J. Neurophysiol. 8, 365–376 (1945).

    Google Scholar 

  • Smith, C. A.: Microscopic structure of the utricle. Am. Otol. (St. Louis) 65, 450–470 (1955).

    Google Scholar 

  • Smith, C. A., and E. W. Dempsey: Electronmicroscopy of the organ of Corti. Amer. J. Anat. 100, 337–368 (1957).

    Google Scholar 

  • Speidel, G. C.: Studies of living nerves. II. Activities of ameboid growth cones, sheath cells and myelin segments as revealed by prolonged observation of individual nerve fibres in frog tadpoles. Amer. J. Anat. 52, 1–79 (1933).

    Google Scholar 

  • Tasaki, I., E. H. Polley and F. Orrego: Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol. 17, 454–474 (1954).

    Google Scholar 

  • Taxi, J.: Etude au microscope électronique des ganglions sympatiques de Mammiferes. C. R. Acad. Sci. (Paris) 245, 564–567 (1957).

    Google Scholar 

  • —: Sur la structure du plexus d'Auerbach de la Souris étudié au microscope électronique. C. R. Acad. Sci. (Paris) 246, 1922–1925 (1958).

    Google Scholar 

  • Terzuolo, C. A., and T. H. Bullock: Measurement of voltage gradient across a neuron adequate to modulate its firing Proc. nat. Acad. Sci. (Wash). 42, 687–694 (1956).

    Google Scholar 

  • Wersäll, J.: Studies on the structure and innervation of the sensory epithelium of cristae ampullares in guinea pig. Acta otolaryng. Suppl. 126 (1956).

  • Wilke, G., u. H. Kirchner: Über röntgenographische Untersuchungen zur Frage der Gliafaserbildung. Dtsch. Z. Nervenheilk. 167, 391–406 (1952).

    Google Scholar 

  • Woodbury, D. M., P. S. Timiras, A. Koch and A. Ballard: Distribution of radiochloride, radiosulfate and inulin in brain of rats. Fed. Proc. 15, 501–502 (1956).

    Google Scholar 

  • Wyckoff, R.W. G., and J. Z. Young: The nerve cell surface. J. Anat. (Lond.) 88, 568 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. Kurt Goerttler zum 60. Geburtstag gewidmet.

Die morphologischen Untersuchungen wurden mit Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horstmann, E., Meves, H. Die Feinstruktur des molekularen Rindengraues und ihre physiologische Bedeutung. Zeitschrift füur Zellforschung 49, 569–604 (1959). https://doi.org/10.1007/BF00338866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00338866

Navigation