Skip to main content

Variations in the Structure and Design of Compound Eyes

  • Conference paper
Facets of Vision

Abstract

At first glance the compound eyes of insects and crustaceans seem to be spherical structures with a more or less uniform distribution of facets. A second look, however, often reveals that the eye is really not symmetrical. There may be regional variations in its curvature, in the sizes of the facet lenses and consequently their packing density. These are reflected in the size and shape of the pseudopupil — the dark spot which marks the part of the eye that images the observer (Stavenga 1979). Even closer observation shows that as the eye is rotated the pseudopupil moves at different speeds in different parts, showing that in some regions the same angle in space occupies more of the eye surface than it does in others. Gordon Walls (1942) wrote that “everything in the vertebrate eye means something”, and although our subjects here are exclusively invertebrate, the same dictum is just as valid. The small variations I have mentioned are not haphazard developmental oddities; they all reflect the way in which the eye samples its environment. Properly interpreted, they tell us a great deal about the role of vision in the animal’s life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H, Wiedemann I (1962) Versuche über den Strahlengang im Insektenauge. Z Naturforsch 17b:480–482.

    Google Scholar 

  • Barlow HB (1952) The size of ommatidia in apposition eyes. J Exp Biol 29:667–674.

    Google Scholar 

  • Barlow HB (1964) The physical limits of visual discrimination. Photophysiology 2:163–202.

    Google Scholar 

  • Barrós-Pita JC, Maldonado H (1970) A fovea in the praying mantis eye. II. Some morphological characteristics. Z Vergl Physiol 67:79–92.

    Article  Google Scholar 

  • Baumgärtner H (1928) Der Formensinn und die Sehschärfe der Bienen. Z Vergl Physiol 7:56–143.

    Article  Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J Comp Physiol A 99:1–66.

    Article  Google Scholar 

  • del Portillo J (1936) Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insekten-Augen und ihrer funktionellen Aufgabe. Z Vergl Physiol 23:100–145.

    Google Scholar 

  • De Vries H (1956) Physical aspects of the sense organs. Prog Biophys Chem 6:208–264.

    Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539.

    Google Scholar 

  • Disney RHL, Schroth M (1988) Observations on egaselia persecutrix Schmitz (Diptera: Phoridae). Entomol Mon Mag (in press).

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig.

    Book  Google Scholar 

  • Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol A 145:139–152.

    Article  Google Scholar 

  • Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771.

    Article  Google Scholar 

  • Hausen K, Strausfeld N (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc London Ser B 208:51–71.

    Article  Google Scholar 

  • Horridge GA (1976) The ommatidium of the dorsal eye of Chloeon as a specialization for photorei-somerization. Proc R Soc London Ser B 193:17–29.

    Article  CAS  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Soc London Ser B 285:1–59.

    Article  CAS  Google Scholar 

  • Howard J, Snyder AW (1983) Transduction as a limitation on compound eye function and design. Proc R Soc London Ser B 217:287–307.

    Article  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York pp 613–756.

    Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Z Naturforsch 29c:592–596.

    CAS  Google Scholar 

  • Kirschfeld K (1976) The resolution of lens and compound eyes. In: Zettler F, Weiler R (eds) Neural principles in vision Springer, Berlin Heidelberg New York, pp 354–370.

    Chapter  Google Scholar 

  • Kirschfeld K (1979) The visual system of the fly: physiological optics and functional anatomy as related to behaviour. In: Schmitt FO, Worden FG (eds) The neurosciences 4th study program. MIT, Cambridge, Mass, pp 297–310.

    Google Scholar 

  • Kirschfeld K, Wenk P (1976) The dorsal compound eye of simuliid flies: an eye specialized for the detection of small rapidly moving objects. Z Naturforsch 31c:764–765.

    Google Scholar 

  • Land MF (1981a) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of Sensory Physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 472–592.

    Google Scholar 

  • Land MF (1981b) Optics of the eyes of Phronima and other deep-sea amphipods. J Comp Physiol A 145:209–226.

    Article  Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol A 154:515–533.

    Article  Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). J Comp Physiol 89:331–357.

    Article  Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of fly eyes. J Comp Physiol A 156:525–538.

    Article  Google Scholar 

  • Land MF, Burton FA, Meyer-Rochow VB (1979) The optical geometry of euphausiid eyes. J Comp Physiol A 130:49–62.

    Article  Google Scholar 

  • Mallock A (1894) Insect sight and the defining power of composite eyes. Proc R Soc London Ser B 55:85–90.

    Article  Google Scholar 

  • Mallock A (1922) Divided composite eyes. Nature (London) 110:770–771.

    Article  Google Scholar 

  • Nilsson D-E (1982) The transparent compound eye of Hyperia (Crustacea): examination with a new method for analysis of refractive index gradients. J Comp Physiol A 147:339–349.

    Article  Google Scholar 

  • Praagh JP van, Ribi W, Wehrhahn C, Wittmann D (1980) Drone bees fixate the queen with the dorsal frontal part of their compound eyes. J Comp Physiol A 136:263–266.

    Article  Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol A 131:95–112.

    Article  Google Scholar 

  • Rossel S (1980) Foveal fixation and tracking in the praying mantis. J Comp Physiol A 139:307–331.

    Article  Google Scholar 

  • Rossel S (1983) Binocular stereopsis in an insect. Nature (London) 302:821–822.

    Article  Google Scholar 

  • Schiff H, Manning RB, Abbott BC (1986) Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. Biol Bull 170:461–480.

    Article  Google Scholar 

  • Schneider L, Draslar K, Langer H, Gogala M, Schlecht P (1978) Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Cytobiologie 16:274–307.

    Google Scholar 

  • Schwind R (1980) Geometrical optics of the Notonecta eye: Adaptations to optical environment and way of life. J Comp Physiol A 140:59–68.

    Article  Google Scholar 

  • Seidl R (1982) Die Sehfelder und Ommatidien-Divergenzwinkel von Arbeiterin, Königin und Drohne der Honigbiene (Apis mellifica) D Thesis, Tech Hochsch Darmstadt.

    Google Scholar 

  • Sherk TE (1977) Development of the compound eyes of dragonflies (Odonata). I. Larval compound eyes. J Exp Zool 201:391–416.

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool 203:61–80.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 225–313.

    Google Scholar 

  • Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116:183–207.

    Article  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439.

    Google Scholar 

  • Wagner H (1986) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets. Philos Trans R Soc London Ser B 312:553–579.

    Article  Google Scholar 

  • Walls GL (1942) The Vertebrate Eye and its Adaptive Radiation. Hafner, New York.

    Book  Google Scholar 

  • Wehrhahn C (1979) Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol Cybernet 32:239–241.

    Article  Google Scholar 

  • Wolburg-Buchholz K (1976) The dorsal eye of Chloëon dipterum (Ephemeroptera). A light-and electron microscopical study. Z Naturforsch 31c:335–336.

    Google Scholar 

  • Zeil J (1983a) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol A 150:379–393.

    Article  Google Scholar 

  • Zeil J (1983b) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J Comp Physiol A 150:395–412.

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eyestalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Land, M.F. (1989). Variations in the Structure and Design of Compound Eyes. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics