Skip to main content

Limited Proteolysis as a Tool to Detect Structure and Dynamic Features of Globular Proteins: Studies on Thermolysin

  • Chapter
Methods in Protein Sequence Analysis

Abstract

In analogy to all enzymatic reactions, the proteolytic cleavage of a polypeptide chain occurs only if the site of cleavage can bind and adapt itself in a specific way to the stereochemistry of the active site of the protease. This is difficult to achieve with native globular proteins, whereas denatured proteins are much more susceptible to proteolysis. In a number of cases, an extraordinary lability to enzymatic hydrolysis of a very small number of specific bonds in a native globular protein has been observed and this selective peptide bond fission has been termed “limited proteolysis”. It is conceivable to suggest that the sites of limited proteolysis in a native globular protein are dictated solely by the stereochemistry of the protein substrate, if a protease of low specificity is employed. In addition, some motility of the substrate protein at the site of cleavage would be required for a proper adaptation to the active site of the protease (Neurath and Walsh 1976; Neurath 1980, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett WS, Huber R (1984) Structural and functional aspects of domain motions in proteins. CRC Crit Rev Biochem 15: 291–384

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL (1981) Protein-protein recognition and assembly. In: Balaban M, Sussman JL, Traub W, Yonath A (eds) Structural aspects of recognition and assembly in biological macromolecules. Balaban International Sciences Services, Philadelphia, pp 281–286

    Google Scholar 

  • Colman PM, Jansonius JN, Matthews BW (1972) The structure of thermolysin: an electron density map at 2.3 A resolution. J Mol Biol 70: 701–724

    Article  PubMed  CAS  Google Scholar 

  • Fanning DW, Smith JA, Rose GD (1986) Molecular cartography of globular proteins with application to antigen sites. Biopolymers 25: 863–883

    Article  PubMed  CAS  Google Scholar 

  • Fassina G, Vita C, Dalzoppo D, Zamboni n M, Fontana A (1986) Autolysis of thermolysin: isolation and characterization of a folded three-fragment complex. Eur J Biochem 156: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986a) Structural and stability features of thermolysin revealed by its autolytic processes. In: Bertini 1, Luchinat C, Maret W, Zeppezauer M (eds) Zinc Enzymes. Birkauser, Boston, pp 225–237

    Google Scholar 

  • Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986b) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43: 835–869

    Article  PubMed  CAS  Google Scholar 

  • Heinrikson RL (1977) Applications of thermolysin in protein structural analysis. Methods Enzymol 47: 175–189

    Article  PubMed  CAS  Google Scholar 

  • Holmes MA, Matthews BW (1982) Structure of thermolysin refined at 1.6 Å resolution. J Mol Biol 160: 623–639

    Article  PubMed  CAS  Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of the protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78: 3824–3828

    Article  PubMed  CAS  Google Scholar 

  • Katchalski-Katzir E (1983) Some general considerations of biorecognition by and of proteins. In: Chaiken IM, Wilchek M, Parik I (eds) Affinity chromatography and biological recognition. Academic Press, New York, pp 7–26

    Google Scholar 

  • Neurath H (1980) Limited proteolysis, protein folding and physiological regulation. In: Jaenicke R (ed) Protein folding. Elsevier/North Holland Biomedical Press, Amsterdam-New York, pp 501–504

    Google Scholar 

  • Neurath H (1986) Limited proteolysis, domains, and the evolution of protein structure. Chimica Scripta 27B: 221–229

    Google Scholar 

  • Neurath H, Walsh KA (1976) Role of proteolytic enzymes in biological regulation. Proc Natl Acad Sci USA 73: 3825–3832

    Article  PubMed  CAS  Google Scholar 

  • Novotny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Fanning DW, Smith JA, Rose GD (1986) Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 83: 226–230

    Article  PubMed  CAS  Google Scholar 

  • Novotny J, Bruccoleri RE (1987) Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Lett 211: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Pangburn MK, Walsh KA (1975) Thermolysin and neutral protease: mechanistic considerations. Biochemistry 14: 4050–4054

    Article  CAS  Google Scholar 

  • Ringe O, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol 45: 197–235

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Vithayathil PJ (1959) Preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem 234: 1459–1465

    PubMed  CAS  Google Scholar 

  • Roche RS, Woordouw G (1978) The structural and functional roles of metal ions in thermolysin. CRC Crit Rev Biochem 5: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Rose GD, Gierasch LM, Smith JA (1985) Turns in peptides and proteins. Adv Protein Chem 37: 1–100

    Article  PubMed  CAS  Google Scholar 

  • Titani K, Hermodson MA, Ericsson LH, Walsh KA, Neurath H (1972) Amino acid sequence of thermolysin. Isolation and characterization of the fragments obtained by cleavage with cyanogen bromide. Biochemistry 11: 2427–2435

    Article  PubMed  CAS  Google Scholar 

  • Tronrud DE, Holden HM, Matthews BW (1987) Structures of two thermolysin- -inhibitor complexes that differ by a single hydrogen bond. Science 235: 571–574

    Article  PubMed  CAS  Google Scholar 

  • Vita C, Dalzoppo D, Fontana A (1985) Limited proteolysis of thermolysin by subtilisin: isolation and characterization of a partially active enzyme derivative. Biochemistry 24: 1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Walsh KA, Ericsson LH, Parmelee DC, Titani K (1981) Advances in protein sequencing. Annu Rev Biochem 50: 261–284

    Article  PubMed  CAS  Google Scholar 

  • Wetlaufer DB (1981) Folding of protein fragments. Adv Protein Chem 34: 61–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fontana, A., Vita, C., Dalzoppo, D., Zambonin, M. (1989). Limited Proteolysis as a Tool to Detect Structure and Dynamic Features of Globular Proteins: Studies on Thermolysin. In: Wittmann-Liebold, B. (eds) Methods in Protein Sequence Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73834-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73834-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73836-4

  • Online ISBN: 978-3-642-73834-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics