Skip to main content

Methods of Immobilization

  • Chapter
Immobilized Biocatalysts

Abstract

Adsorption is the simplest and the oldest method of immobilizing an enzyme onto a water-insoluble carrier. It has already been mentioned (p. 18) that as early as 1916 Nelson and Griffin observed that invertase adsorbed on active charcoal retained its sucrose-splitting activity. Since this discovery, the adsorption method has been applied for innumerable enzymes and whole cells. That whole cells can be made to adhere to suitable solid bodies has been known for even longer than the adsorption of single enzymes: in the nineteenth century (see Sect. 1.6) bacteria attached to wood shavings were already used in the production of vinegar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • BeddoMs C G, Gil M H, Guthrie J T (1986) Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose, polygalacturonic acid and starch based craft copolymers containing maleic anhydride. Biotechnol Bioeng 28: 51–57

    Article  Google Scholar 

  • Cabral J M S, Novais J M, Kennedy J F (1986) Immobilization studies of whole microbial cells on transition metal activated inorganic supports. Appl Microbiol Biotechnol 23: 157–162

    Article  CAS  Google Scholar 

  • Hulst A C, Tramper J, Riet K van’t, Westerbeek J M M (1985) A new technique for the production of immobilized biocatalyst in large qantities. Biotechnol Bioeng 27: 870–876

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Wagner F (1983) Methods for the immobilization of microbial cells. In: Chibata I, Wingard L B (eds) Applied biochemistry and bioengineering, vol 4, Academic Press, New York, pp 11–51

    Google Scholar 

  • Ito H, Shimizu A, Ichikizaki I (1986) Preparation and properties of stable water- insoluble derivatives of glutathione s-aryltransferase. Biotechnol Bioeng 28: 97100

    Article  Google Scholar 

  • Kucera J (1986) The polymeric p- and o-quinones as the reactive supports for enzymes immobilization. Biotechnol Bioeng 28: 110–111

    Article  PubMed  CAS  Google Scholar 

  • Kumakura M, Kaetsu I, Nisizawa K (1984) Cellulase production from immobilized growing cell composites prepared by radiation polymerization. Biotechnol Bioeng 26: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Marty J-L (1985) Application of response surface methodology to optimization of glutaraldehyde activation of a support for enzyme immobilization. Appl Microbiol Biotechnol 22: 88–91

    Article  CAS  Google Scholar 

  • Mattiasson B (1982) Immobilization methods. In: Mattiasson B (ed) Immobilized cells and organelles, vol 1. CRC Press, Boca Raton, pp 3–25

    Google Scholar 

  • Mayer L D, Bally M B, Hope M J, Cullis P R (1986) Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids 40: 333–345

    Article  PubMed  CAS  Google Scholar 

  • Okita M B, Bonham D B, Gainer J L (1985) Covalent coupling of microorganisms to a cellulosic support. Biotechnol Bioeng 27: 632–637

    Article  PubMed  CAS  Google Scholar 

  • Papisov M I, Naksimenko A V, Torchilin V P (1985) Optimization of reaction conditions during enzyme immobilization on soluble carboxyl-containing carriers. Enz Microb Technol 7: 11–16

    Article  CAS  Google Scholar 

  • Rouxhet P G, Haecht J L van, Didelez J, Gerard P, Briquet M (1981) Immobilization of yeast cells by entrapment and adhesion using silicious materials. Enzyme Microbial Technol 3: 49–54

    Article  CAS  Google Scholar 

  • Sikyta B (1986) Methods of cell immobilization. Microbiological Sci 3: 16–17

    Google Scholar 

  • Tanaka H, Kurosawa H, Kokufuta E, Veliky I A (1984) Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quaternized poly(ethy- leneimine). Biotechnol Bioeng 26: 1393–1394

    Article  PubMed  CAS  Google Scholar 

  • Tsuge H, Okada T (1984) Immobilization of yeast pyridoxaminephosphate oxidase to halogenoacetyl polysaccharides. Biotechnol Bioeng 26: 412–418

    Article  PubMed  CAS  Google Scholar 

  • Vorlop K D, Klein J (1983) New developments in the field of cell immobilization - formation of biocatalysts by ionotropic gelation. In: Lafferty R M (ed) Enzyme technology. Springer, Berlin Heidelberg New York, pp 219–235

    Google Scholar 

  • Wang H Y, Lee S S, Takach Y, Cawthon L (1982) Maximizing microbial cell loading in immobilized cell systems. Biotechnol Bioeng Symp 12: 139–146

    CAS  Google Scholar 

  • klongkhalaung C, Kashiwagi Y, Magae Y, Ohta T, Sasaki T (1985) Cellulase immobilized on a soluble polymer. Appl Microbiol Biotechnol 21: 37–41

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmeier, W. (1988). Methods of Immobilization. In: Immobilized Biocatalysts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73364-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73364-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18808-7

  • Online ISBN: 978-3-642-73364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics