Skip to main content

Bioavailability of Amino Acids and Amino Acid Precursors for Neurotransmitter Action: The Role of Hormones

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

Abstract

In the context of neurotransmitter action, amino acids serve as inhibitory (taurine and glycine) and excitatory neurotransmitters (glutamate and aspartate), precursors of neurotransmitters (tyrosine and tryptophan), and transducers of transmitter components (glycine and serine in transmethylation processes). These amino acids derive exogenously from nutrients, and endogenously from the intermediary metabolism, and from the degradation of protein stores. They circulate in blood in the free from and bound to blood proteins (tryptophan), and blood cells (taurine). Hormones influence the amino acid bioavailability for neural actions in that they regulate the amino acid release from muscle proteins, their metabolism, and their transport across the plasma membrane. The latter step comprises several loci of action, e. g., influx into cellular systems of the gastrointestinal tract, efflux from muscle and metabolizing organs, and transport across the blood-brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rao, M. L., Fels, K. (1987). Beeinflussen Tryptophan und Serotonin beim Menschen die MelatoninAusschüttung und damit die Funktion des „Regulators der Regulatoren“ (Zirbeldrüse)? In: Fortschr. Pharmakother., Vol. 3. ( Stille, G., Wagner, W., eds.). Karger, Basel, pp. 87–99.

    Google Scholar 

  2. Cahill, G. F. Jr., Aoki, T. T., Marliss, E. B. (1972). Endocrinology. In: Handbook of Physiology (Steiner, D., Freinkel, N., eds.),vol.1, Williams & Wilkins, Baltimore, p. 563.

    Google Scholar 

  3. Fulks, R., Li, J. B., Goldberg, A. L. (1975). Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 250: 290–298.

    PubMed  CAS  Google Scholar 

  4. Goldberg, A. L. (1979). Influence of insulin and contractile activity on muscle size and protein balance. Diabetes 28: 18–24.

    PubMed  CAS  Google Scholar 

  5. Li, J. B., Goldberg, A. L. (1976). Effects of food deprivation on protein synthesis and degradation in rat skeletal muscle. Am. J. PhysioL 231: 441–448.

    PubMed  CAS  Google Scholar 

  6. Mortimore, G. E., Mondon, C. F. (1970). Inhibition by insulin of valine turnover in liver. J. BioL Chem. 245: 2375–2383.

    PubMed  CAS  Google Scholar 

  7. Rannels, D. E., Kao, R., Morgan, H. E. (1975). Effect of insulin on protein turnover in heart muscle. J. Biot Chem. 250: 1694–1701.

    CAS  Google Scholar 

  8. Rannels, D. E., Mckee, E. E., Morgan, H. E. (1977). Regulation of protein synthesis and degradation in heart and skeletal muscle. In: Biochemical actions of hormones (Litwack, G., ed.), vol. 4, Academic Press, New York, pp. 135–195.

    Google Scholar 

  9. Adibi, S. A., Morse, E. L. Amin, P. M. (1971). Interrelationships between level of amino acids in plasma and tissues during starvation. Am. J. Physiol. 221: 829–838.

    PubMed  CAS  Google Scholar 

  10. Fernstrom, J. D., Wurtman, R. J. (1972). Elevation of plasma tryptophan by insulin in rat. Metabolism 21: 337.

    Article  PubMed  CAS  Google Scholar 

  11. Lindstrom, P., Sehlin, J. (1986). Aromatic amino acids and pancreatic islet function: a comparison of L-tryptophan and L-5-hydroxytryptophan. Mol Cell. Endocrinol. 48: 121–126.

    Article  PubMed  CAS  Google Scholar 

  12. Phelps, R. L., Metzger, B. E., Freinkel, N. (1981). Carbohydrate metabolism in pregnancy. XVII. Diurnal profiles of plasma glucose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am. J. Obstet. GynecoL 140: 730–736.

    PubMed  CAS  Google Scholar 

  13. Goldberg, A. L., Chang, T. W. (1978). Regulation and significance of amino acid metabolism in skeletal muscle. Fed. Proc. 37: 2301–2307.

    PubMed  CAS  Google Scholar 

  14. Pardridge, W. M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28: 103–108.

    Article  PubMed  CAS  Google Scholar 

  15. Fernstrom, J. D., Wurtman, J. R. (1974). Nutrition and the brain. Sci. Am. 230: 84–92.

    Article  PubMed  CAS  Google Scholar 

  16. Manchester, K. L. (19). Insulin in protein synthesis. In: Biochemical actions of hormones (Litwack, G., ed.), Vol. 1, Academic Press, New York, pp. 267.

    Google Scholar 

  17. Sanders, R. B., Riggs, T. R. (1967). Modification by insulin of the distribution of two model amino acids in the rat. Endocrinology 80: 29–37.

    Article  PubMed  CAS  Google Scholar 

  18. Goldfine, I. D., Gardner, J. D., Neville, D. M. (1972). Insulin action in isolated rat thymocytes. I. Binding of 1251-Insulin and stimulation of amino butyric acid transport. J. Biol. Chem. 247: 6919–6926.

    PubMed  CAS  Google Scholar 

  19. Elsas, L. J., Albrecht, O. S., Koehne, W., Rosenberg, L. E. (1967). Effect of puromycin on insulin-stimulated amino acid transport in muscle. Nature 214: 916–917.

    Article  PubMed  CAS  Google Scholar 

  20. Elsas, L. F., Albrecht, I., Rosenberg, L. E. (1968). Insulin stimulation of amino acid uptake in rat diaphragm. Relationship to protein synthesis. J. BioL Chem. 243: 1846–1853.

    Google Scholar 

  21. Hjalmarson, A., Ahren, K. (1967). Sensitivity of the rat diaphragm to growth hormone. 1. In vivo and in vitro effects of growth hormone on amino acid transport. Acta Endocrinol. 54: 645–662.

    Google Scholar 

  22. Aoki, T. T., Müller, W. A., Brennan, M. F., Cahill, G. F. Jr. (1974). Effect of glucagon on amino acid and nitrogen metabolism in fasting man. Metabolism 23: 805–814.

    Article  PubMed  CAS  Google Scholar 

  23. Landau, R., Lugibihl (1969). Effect of glucagon on concentration of several free amino acids in plasma. Metabolism.18: 265–276.

    Google Scholar 

  24. Floyd, J. C. Jr., Fajans, S. S., Pek, S. et al. (1971). Synergistic effect of essential amino acids and glucose upon insulin secretion in man. Diabetes 19: 109–115.

    Google Scholar 

  25. Goldberg, A. L., Tischler, M., Demartino, G., Griffin, G. (1980). Hormonal regulation of protein degradation and synthesis in skeletal muscle. Fed. Proc. 39: 31–36.

    PubMed  CAS  Google Scholar 

  26. Florini, J. R., Breuer, C. B. (1966). Amino acid incorporation into protein by cell-free systems from rat skeletal muscle. V. Effects of pituitary growth hormone on activity of ribosomes and ribonucleic acid polymerase in hypophysectomized rats. Biochemistry 5: 1870–1976.

    Article  PubMed  CAS  Google Scholar 

  27. Tata, J. (1974). The biochemical basis of STH-action. Nova Acta Leopoldina 40: 123.

    CAS  Google Scholar 

  28. Stahnke, N., Plettner, C., Blunck (1977). Effects of growth hormone and protein metabolism. Acute changes in plasma amino acids in growth retarded patients with and without growth hormone deficiency. Acta Paediatr. Scand. 66: 153–159.

    CAS  Google Scholar 

  29. Bejar, R. L., Smith, G. F., Park, S., Spellacy, W. N., Wolfson, S. L., Nyhan, W. L. (1970). Cerebral gigantism: concentrations of amino acids in plasma and muscle. J. Pediatrics 105: 105–111

    Article  Google Scholar 

  30. Zachmann, M. (1969). Influence of human growth hormone (HGH) on plasma and urine amino acid concentrations in hypopituitary dwarfs. Acta Endocrinol. 62: 513–520.

    PubMed  CAS  Google Scholar 

  31. Zinnemann, H. H., Johnson, J. J., Seal, U. S. (1963). Effect of short-term therapy with cortisol on the urinary excretion of free amino acids. J. Clin. Endocr. 23: 996–1000.

    Article  Google Scholar 

  32. Zischka, R., Orth, E., Castells, S. (1970). Effects of short-term administration of dexamethasone on urinary and plasma free amino acids in children. J. Clin. Endocr 31: 95–97.

    Article  PubMed  CAS  Google Scholar 

  33. Snape, B. M., Badawy, A. A.-B. (1981). Enhancement of rat brain tyrosine aminotransferase activity by cortisol. Biochem. J. 198: 417–420.

    PubMed  CAS  Google Scholar 

  34. Garber, A. J., Karl, I. E., Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal muscle. VI. (3-Adrenergic inhibition of amino acid release. J. BioL Chem. 251: 851–857.

    PubMed  CAS  Google Scholar 

  35. Felig, P., Wahren, J. (1971). Amino acid metabolism in exercising man. J. Clin. Invest. 50: 27032714.

    Google Scholar 

  36. Milakofsky, L., Hare, T. A., Miller, J. M., Vogel, W. H. (1985). Rat plasma levels of amino acids and related compounds during stress. Life Sci. 36: 753–761

    Article  PubMed  CAS  Google Scholar 

  37. Wernerman, J., Brandt, R., Strandell, T., Allgen, L: G., Vinnars, E. (1985). The effect of stress hormones on the interorgan flux of amino acids and on the concentration of free amino acids in skeletal muscle. Clin. Nutr. 4: 207–216.

    Google Scholar 

  38. Westcott, K. R., Laporte, D. C., Storm, D. R. (1979). Resolution of adenylate cyclase sensitive and insensitive to Ca and Ca-dependent regulatory proteins (CDR) by CDR-sepharose affinity chromatography. Proc. Nat. Acad. Sci. USA 76: 204–208.

    Article  PubMed  CAS  Google Scholar 

  39. Eriksson, T., Carlsson, A. (1982). Adrenergic influence on rat plasma concentration of tyrosine and typtophan. Life ScL 30: 1465–1472.

    Article  CAS  Google Scholar 

  40. Lampson, W. G., Kramer, J. H., Schaffer, S. W. (1983). Potentiation of the actions of insulin by taurine. Can. J. Physiol. PharmacoL 61: 457–463.

    Article  CAS  Google Scholar 

  41. Macallum, A. B SIVERTZ, C. (1942). The potentiation of insulin by sulfones. Can. Chem. Process. 26 569

    Google Scholar 

  42. Kuriyama, K., Ohkuma, S., Muramatsu, M. (1981). Effect of taurine of calcium paradox and ischemic heart failure. Am. J. Physiol. 240: H238-H 246.

    Google Scholar 

  43. Gong, J.-H. (1983). Wirkung von Tri-lodothyronin und Insulin auf den Taurintransport bei Neocortex-Kulturen des Rattenhirns. Diss. University of Bonn

    Google Scholar 

  44. Flaim, K. E., Li, J. B., Jefferson, L. S. (1978). Effects of thyroxine on protein turnover in rat skeletal muscle. Am. J. Physiol. 235: E231 - E236.

    PubMed  CAS  Google Scholar 

  45. Ingbar, S. H. (1986). The thyroid gland. In: Textbook of Endocrinology (Williams, R. H., ed.), 3rd ed., W. B. Saunders Co., Phiadelphia.

    Google Scholar 

  46. Goldberg, A. L., Griffin, G. E., Dice, J. F. (1977). Influence of food deprivation and adrenal steroids on DNA synthesis in various mammalian tissues. Am. J. Physiol. 228: 310–317.

    Google Scholar 

  47. Griffin, G. E., Goldberg, A. L. (1977). Hormonal control of protein synthesis and degradation in rat skeletal muscle. J. Physiol. Comm.: 54P - 55 P.

    Google Scholar 

  48. Heinonen, K. (1975). Effects of hypothyroidism and thyroxine substitution on the metabolism of L-methionine, L-cystathionine and taurine in developing rat brain. Acta EndocrinoL 80: 487500.

    Google Scholar 

  49. Craft, I. L., Wise, I. J. (1969). Changes in amino acid metabolism during the menstrual cycle. J. Obstet Gynaec. Brit. Cwlth. 76: 928–933.

    Article  CAS  Google Scholar 

  50. Craft, I. L., Peters, T. J. (1971). Quantitative changes in plasma amino acids induced by oral contraceptives. Clin. ScL 41: 301–307.

    CAS  Google Scholar 

  51. Moller, S. E. (1981). Effect of oral contraceptives on tryptophan and tyrosine availability: evidence for a possible contribution to mental depression. J. Neuropsychobiology 7: 192–200.

    Article  CAS  Google Scholar 

  52. Oepen, H., Oepen, I., Fuchs, G. (1969). Über den Einfluß von Ovulation shemmern auf die SerumAminosäuren im Vergleich mit geschlechts-, cyclus-und schwanger schaft stypis chen Befunden. Arch. Gynäk. 208: 33–43.

    Google Scholar 

  53. Halbreich, U., Endicott, J., Goldstein, S., Nee, J. (1986). Premenstrual changes and changes in gonadal hormones. Acta Psychiatr. Scand. 74: 576–586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rao, M.L. (1988). Bioavailability of Amino Acids and Amino Acid Precursors for Neurotransmitter Action: The Role of Hormones. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics