Skip to main content

The Importance of the Liver as a Regulator of Amino Acid Supply to the Brain

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

  • 160 Accesses

Abstract

In mammals, tryptophan and phenylalanine are essential components of the diet, dietary tyrosine being supplemented by hydroxylation of phenylalanine in the liver. The concentrations of the amino acids in the blood are regulated by the rates of dietary intake, protein turnover and peripheral metabolism (occurring mostly in the liver; see Figure 1). The aromatic amino acids are of particular interest because of their role as precursors of several neurotransmitters, i. e., dopamine, noradrenaline and serotonin. The aromatic amino acids share, with many other neutral amino acids, a common transport system into the brain and it is clear that the ratio of their concentrations, as well as their absolute concentrations, is important for neurotransmitter synthesis. The synthesis of serotonin has been shown to be regulated by the supply of its precursor, tryptophan. Tryptophan hydroxylase is considered to be the rate-limiting enzyme for serotonin synthesis and is unsaturated with respect to its substrate, tryptophan (1). Increases or decreases in brain tryptophan will therefore increase or decrease the synthesis of serotonin; the normal concentration of brain tryptophan approximates to the Km of tryptophan hydroxylase for tryptophan (1). The control of brain serotonin is of great importance because of the role of this neurotransmitter in the cerebral functions associated with mood, sleep, sensitivity to pain and appetite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. KNOWLES, R. G., POGSON, C. I. (1984). Tryptophan uptake and hydroxylation in rat forebrain synaptosomes. J. Neurochem. 42: 677–684.

    Article  PubMed  CAS  Google Scholar 

  2. WEISSBACH, L., HANDLOGTEN, M. E., CHRISTENSEN, H. N., KILBERG, M. S. (1982). Evidence for two Na+-independent neutral amino acid transport systems in primary cultures of rat hepytocytes. J. Biol. Chem. 257: 12006–12011.

    PubMed  CAS  Google Scholar 

  3. ROSENBERG, R., YOUNG, J. D., ELLORY, J. C. (1980). L-Tryptophan transport in human red blood cells. Biochim. Biophys. Acta. 598: 375–384.

    Article  PubMed  CAS  Google Scholar 

  4. JAYDUTT, V. V., CHRISTENSEN, H. N. (1985). Discrimination of Na+-independent transport systems, L, T and asc in erythrocytes. J. Biol. Chem. 260: 2912–2921.

    Google Scholar 

  5. SALTER, M., KNOWLES, R. G., POGSON, C. I. (1986). Transport of the aromatic amino acids into isolated rat liver cells. Biochem. J. 223: 499–506.

    Google Scholar 

  6. HALEY, C. J., HARPER, A. E. (1978). The importance of transamination and decarboxylation in phenylalanine metabolism in vivo in the rat. Arch. Biochem. Biophys. 189: 524–530.

    Article  PubMed  CAS  Google Scholar 

  7. POGSON, C. I., DICKSON, A. J., KNOWLES, R. G., SALTER, M., SANTANA, M. A., STANLEY, J. C., FISHER, M. J (1986). Control of phenylalanine and tyrosine metabolism by phosphorylation mechanisms. Adv. Enz. Regul. 25: 309–328.

    Article  CAS  Google Scholar 

  8. FISHER, M. J., POGSON, C. I. (1984). Phenylalanine hydroxylase in liver cells. Biochem. J. 219: 79–85.

    PubMed  CAS  Google Scholar 

  9. DICKSON, A. J., MARSTON, F. A. O., POGSON, C. I. (1981). Tyrosine aminotransferase as the rate-limiting step for tyrosine catabolism in isolated rat liver cells. FEBS Lett. 127: 28–32.

    Article  PubMed  CAS  Google Scholar 

  10. STANLEY, J. C., FISHER, M. J., POGSON, C. I. (1985). The metabolism of L-phenylalanine and L-tyrosine by liver cells isolated from adrenalectomized rats and from streptozotocin-diabetic rats. Biochem. J. 228: 249–255.

    PubMed  CAS  Google Scholar 

  11. STANLEY, J. C., SALTER, M., FISHER, M. J., POGSON, C. I. (1985). The effect of pyridoxine deficiency on the metabolism of the aromatic amino acids by isolated rat liver cells. Arch. Biochem. Biophys. 240: 792–800.

    Article  PubMed  CAS  Google Scholar 

  12. SALTER, M., STANLEY, J. C., FISHER, M J., POGSON, C. I. (1984). The influence of starvation and tryptophan administration on the metabolism of phenylalanine, tyrosine and tryptophan in isolated rat liver cells. Biochem. J. 221: 431–438.

    PubMed  CAS  Google Scholar 

  13. YOUNG, S. N., ST. ARNAUD-McKENZIE, D., SOURKES, T. L. (1978). Importance of tryptophan pyrrolase and aromatic amino acid decarboxylase in the catabolism of tryptophan. Biochem. Pharmacol. 27: 763–767.

    CAS  Google Scholar 

  14. SALTER, M., POGSON, C. I. (1986). The role of haem in the regulation of rat liver tryptophan metabolism. Biochem. J. 240: 259–263.

    PubMed  CAS  Google Scholar 

  15. WELCH, A. N., BADAWY, A. A.-B. (1980). Tryptophan pyrrolase in haem regulation. Biochem. J. 192: 403–410.

    PubMed  CAS  Google Scholar 

  16. SALTER, M., POGSON, C. I. (1985). The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Biochem. J. 229: 499–504.

    PubMed  CAS  Google Scholar 

  17. NAKAMURA, T., SHINNO, H., ICHIHARA, A. (1980). Insulin and glucagon as a new regulator system for tryptophan oxygenase activity demonstrated in primary cultured rat hepytocytes. J. Biol. Chem. 255: 7533–7535.

    PubMed  CAS  Google Scholar 

  18. KACSER, H., BURNS, J. A. (1973). The control of flux. Symp. Soc. Exp. Biol. 32: 65–104.

    Google Scholar 

  19. HEINRICH, R., RAPAPORT, T. A. (1974). A linear steady-state treatment of enzymatic chains. Eur. J. Biochem. 42: 89–95.

    Article  PubMed  CAS  Google Scholar 

  20. SALTER, M KNOWLES, R. G., POGSON, C. I. (1986). Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem. J. 234 635–647.

    Google Scholar 

  21. SMITH, S. A., CARR, F. P. A., POGSON, C. I. (1980). The metabolism of L-tryptophan by isolated rat liver cells. Biochem. J. 192: 673–686.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salter, M., Pogson, C.I. (1988). The Importance of the Liver as a Regulator of Amino Acid Supply to the Brain. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics