Skip to main content

Pprocesses That Couple Amino Acid Availability to Neurotransmitter Synthesis and Release

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

Abstract

Certain neurotransmitters are synthesized from precursor amino acids (e. g. catecholamines from tyrosine; serotonin [5-hydroxytryptamine or 5HT] from tryptophan) which must be obtained from the circulation. The concentrations of tyrosine and tryptophan, as well as of the other large neutral amino acids (LNAA) in plasma, are subject to wide variations (1, 2), changing not only when people or animals receive various drugs (3, 4) or the amino acids themselves (5, 6), but also in disease states affecting amino acid metabolism (7, 8), and, of major physiological relevance, in association with eating (1, 2) or with strenuous exercise (9, 10, 11). As will be described below, these variations often cause parallel changes in the levels of these amino acids within the monoaminergic neurons, and thereby may influence both neurotransmitter synthesis and even central neurotransmission (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. FERNSTROM, J. D., WURTMAN, R. J., HAMMARSTROM-WIKLUND, B., RAND, W. M., MUNRO, H. N., and DAVIDSON, C. S. (1979). Diurnal variations in the plasma concentrations of tryptophan, tyrosine and other neutral amino acids: Effect of dietary protein intake. Am. J. Clin. Nutr. 32: 1912 – 1922.

    CAS  Google Scholar 

  2. MAHER, T. J., GLAESER, B. S., and WURTMAN, R. J. (1984). Diurnal variations in the plasma concentrations of basic and neutral amino acids in red cell concentrations of aspartate and glutamate: Effects of dietary protein intake. Am. J. Clin. Nutr. 39: 722 – 729.

    PubMed  CAS  Google Scholar 

  3. BADWAY, A. A. B., and EVANS, M. (1981). Inhibition of rat liver pyrrolase activity and elevation of brain tryptophan by administration of antidepressants. Biochem. Pharmacol. 30: 1211–1216.

    Article  Google Scholar 

  4. VALZELLI, L., BERNASCONI, S., COEN, E., and PETKOV, V. V. (1980). Effect of different psychoactive drugs on serum and brain tryptophan levels. Neuropsychobiol. 6: 224 – 229.

    Article  CAS  Google Scholar 

  5. GLAESER, B., MELAMED, E., GROWDON, J. H., and WURTMAN, R. J. (1979). Elevation of plasma tyrosine after a single oral dose of L-tyrosine. Life Sci. 25: 265–272.

    Article  PubMed  CAS  Google Scholar 

  6. FERNSTROM, J. D., and WURTMAN, R. J. (1971). Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science 173: 149–152.

    Article  PubMed  CAS  Google Scholar 

  7. CURZON, G. (1980). Transmitter metabolism and behavioral abnormalities in liver failure. In: The Biochemistry of Psychiatric Disturbances. ( Curzon, G. ed.), pp. 89–111. Wiley, Chichester.

    Google Scholar 

  8. CURZON, G., KANTAMANENI, B. D., CALLIGHAN, N., and SULLIVAN, P. A. (1982). Brain transmitter precursors and metabolites in diabetic ketoacidosis. J. Neurol. Neurosurg. Psychiat. 45: 489–493.

    Article  PubMed  CAS  Google Scholar 

  9. ACWORTH, I. N., NICHOLASS, J., MORGAN, B., and NEWSHOLME, E. A. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem. Biophys. Res. Commun. 137: 149–163.

    Article  PubMed  CAS  Google Scholar 

  10. ACWORTH, I. N., DURING, M. J., WATKINS, C. J., KREMPF, M. ELSENBERG, M., and WURTMAN, R. J. (1987). The effects of marathon running on plasma free and total large neutral amino acids and free fatty acids. In preparation.

    Google Scholar 

  11. DECOMBAZ, J., REINHARDT, P., ANANTHARAMAN, K., von GLUTZ, G., and POORTMANS, J. R. (1979). Biochemical changes in a 100 km run: Free amino acids, urea, and creatine. Eur. J. Appl. PhysioL 41: 61–72.

    CAS  Google Scholar 

  12. WURTMAN, R. J., HEFTI, F., and MELAMED, E. (1980). Precursor control of neurotransmitter synthesis. Pharmacol. Rev. 32: 315–335.

    PubMed  CAS  Google Scholar 

  13. FERNSTROM, J. D., and WURTMAN, R. J. (1972). Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science 178: 414–416.

    Article  PubMed  CAS  Google Scholar 

  14. FERNSTROM, J. D., and FALLER, D. V. (1978). Neutral amino acids in the brain: Changes in response to food ingestion. J. Neurochem. 30: 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  15. YOKOGOSHI, H., and WURTMAN, R. J. (1986). Meal compositions and plasma amino acid ratios: Effect of various proteins and carbohydrates, and of various protein concentrations. Metabolism 35: 837–842.

    Article  PubMed  CAS  Google Scholar 

  16. PARDRIDGE, W. M. (1979). Regulation of amino acid availability to the brain: Selective control mechanisms for glutamate. In: Glutamic Acid: Advances in Biochemistry and Physiology ( Filer, L. J., Kare, M. R., Garattini, S., and Wurtman, R. J., eds.), pp. 125–137. Raven Press, New York.

    Google Scholar 

  17. BARRA, H. S., UNATES, L. E., SAAVERDRA, M. S., and CAPPUTO, R. (1972). Capacities of binding amino acids by t-RNAs from rat brain and their changes during development. J. Neurochem. 19: 2287–2297.

    Article  Google Scholar 

  18. STANBURY, J. B., WYNGAARDAN, J. B., and FREDRICKSON, D. S. (1966). The Metabolic Basis for Inherited Disease. McGraw-Hill Book Co., New York.

    Google Scholar 

  19. KAYE, W. H., GWIRTSMAN, H. E., BREWERTON, T. D., GEORGE, T. D., and WURTMAN, R. J. (1987). Bingeing behavior and plasma amino acids: A possible involvement of brain serotonin in bulimia nervosa. Psychiatr. Res. (submitted).

    Google Scholar 

  20. FERNSTROM, J. D., and WURTMAN, R. J. (1971). Brain serotonin content: Increase following ingestion of carbohydrate diet. Science 174: 1023–1025.

    Article  PubMed  CAS  Google Scholar 

  21. BRADFORD, H. F. (1986). Chemical Neurobiology. W. H. Freeman and Co., New York.

    Google Scholar 

  22. FERNSTROM, J. D., and WURTMAN, J. R. (1972). Elevation of plasma tryptophan by insulin in the rat. Metabolism 21: 337–342.

    Article  PubMed  CAS  Google Scholar 

  23. McMENAMY, R. H., and ONCLEY, J. L. (1958). The specific binding of L-tryptophan to serum albumin. J. Biol. Chem. 233: 1436–1440.

    Google Scholar 

  24. MADRAS, B. K., COHEN, E. L., MESSING, R., MUNRO, H. N., and WURTMAN, R. J. (1974). Relevance of serum-free tryptophan to tissue tryptophan concentrations. Metabolism 23: 1107–1116.

    Article  PubMed  CAS  Google Scholar 

  25. KNOTT, P. J., and CURZON, G. (1972). Free tryptophan in plasma and brain tryptophan metabolism. Nature 239: 452–453.

    Article  PubMed  CAS  Google Scholar 

  26. YUWILER, A., OLDENDORF, W. H., GELLER, E., and BRAUN, L. (1977). The effect of albumin binding and amino acid competition on tryptophan uptake into brain. J. Neurochem. 28: 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  27. PARDRIDGE, W. M., and OLDENDORF, W. H. (1975). Kinetic analysis of blood-brain barrier transport of amino acids. Biochem. Biophys. Acta. 401: 128–136.

    Article  PubMed  CAS  Google Scholar 

  28. PARDRIDGE, W. M. (1986). Potential effects of the dipeptide sweetener aspartame on the brain. In: Nutrition and the Brain ( Wurtman, R. J., and Wurtman, J. J., eds.) 7, pp. 199–241. Raven Press, New York.

    Google Scholar 

  29. LEIBERMAN, H., CABALLERO, B., and FINER, N. (1986). The composition of lunch determines afternoon plasma tryptophan ratios in humans. J. Neural. Transm. 65: 211–217.

    Article  Google Scholar 

  30. ASHLEY, D. V. M., FLEURY, M. O., GOLAY, A., MAEDER, E., and LEATHWOOD, P. D. (1985). Evidence for deminished brain 5HT biosynthesis in obese diabetic and non-diabetic humans. Am. J. Clin. Nutr. 42: 1240–1245.

    PubMed  CAS  Google Scholar 

  31. CABALLERO, B., FINER, N., and WURTMAN, R. J. (1987). Plasma amino acid levels in obesity: Effects of insulin resistance. In: Amino Acids in Health and Disease: New Prospectives. ( Kaufman, S., ed.), pp. 369–382. Alan R. Liss Inc., New York.

    Google Scholar 

  32. HERAIEF, E., BUCKHARDT, P., MAURON, C., WURTMAN, J. J., and WURTMAN, R. J. (1983). The treatment of obesity by carbohydrate deprivation suppresses plasma tryptophan and its ratio to other neutral amino acids. J. Neural. Transm. 57: 187–195.

    Article  PubMed  CAS  Google Scholar 

  33. FERNSTROM, J. D., WURTMAN, R. J., HAMMARSTROM-WIKLUND, B., RAND, W. M., MUNRO, H. N., and DAVIDSON, C. S. (1979). Diurnal variations in plasma amino acid concentrations in patients with cirrhosis: Effect of dietary protein. Am. J. Clin. Nutr. 32: 1923–1933.

    CAS  Google Scholar 

  34. FERNSTROM, J. D., ARNOLD, M. A., WURTMAN, R. J., HAMMARSTROM-WIKLUND, B., MUNRO, H. N., and DAVIDSON, C. S. (1978). Diurnal variations in plasma insulin concentrations in normal and cirrhotic subjects: Effect of dietary protein. J. Neural. Transm. 14: 133–142.

    Google Scholar 

  35. BLOXAM, D. L., and CURZON, G. (1978). A study of proposed determinants of brain tryptophan concentration in rats after portocaval anastomosis or sham operation. J. Neurochem. 31: 1255 1263.

    Google Scholar 

  36. ASHCROFT, G. W., ECCLESTON, D., and CRAWFORD, T. B. B. (1965). 5-hydroxyindole metabolism in rat brain: A study of intermediate metabolism using the technique of tryptophan loading. J. Neurochem. 12: 483–492.

    Google Scholar 

  37. YOUNG, S. (1985). The clinical psychopharmacology of tryptophan. In: Nutrition and the Brain. ( Wurtman, R. J., and Wurtman, J. J., eds.) 7, pp. 49–88. Raven Press, New York.

    Google Scholar 

  38. COLMENARES, J. L., WURTMAN, R. J., and FERNSTROM, J. D. (1975). Effect of ingesting a carbohydrate-fat meal on the levels and synthesis of 5-hydroxyindoles in various regions of the rat central nervous system. J. Neurochem. 25: 825–829.

    Article  PubMed  CAS  Google Scholar 

  39. MORET, C. (1985). Pharmacology of the serotonin autoreceptor. In: Neuropharmacology of Serotonin. ( Green, A. R., ed.), pp. 21–49. Oxford University Press, New York.

    Google Scholar 

  40. COOPER, J. R., BLOOM, F. E., and ROTH, R. H. (1982). The Biochemical Basis of Neuropharmacology. Oxford University Press, New York.

    Google Scholar 

  41. GALLAGER, D. W., and AGHAJANIAN, G. K. (1976). Inhibition of firing of raphe neurons by tryptophan and 5-hydroxy-tryptophan: Blockage by inhibiting serotonin synthesis with R04-4602. Neuropharmacology 14: 149–158.

    Article  Google Scholar 

  42. BRAMWELL, G. (1974). Factors affecting the activity of 5HT containing neurons. Brain Res. 79: 515–519.

    Article  PubMed  CAS  Google Scholar 

  43. DE SIMONI, M. G., SOKOLA, A., FODRITTO, F., TOSO, G. D., and ALGERI, S. (1987). Functional meaning of tryptophan-induced increase of 5-HT metabolism as clarified by in vivo voltammetry. Brain Res. 411: 89–94.

    Article  PubMed  Google Scholar 

  44. SCHAECHTER, J., and WURTMAN, R. J. (1987). Effect of tryptophan availability on release of endogenous serotonin from rat hypothalamic slices. Society for Neuroscience Abstracts Volume 13, New Orleans.

    Google Scholar 

  45. SMITH, B., and PROCKUP, D. J. (1962). Central-nervous-system effects of ingestion of L-tryptophan by normal subjects. N. Engl. J. Med. 267: 1338–1341.

    Article  PubMed  CAS  Google Scholar 

  46. MOLLER, S. E., KIRK, L., and HONORE, P. (1980). Relationship between plasma ratio of tryptophan to competing amino acids and the response to L-tryptophan treatment in endogenously depressed patients. J. Affective Disord. 2: 47–49.

    Article  CAS  Google Scholar 

  47. WILCOCK, G. K., STEVENS, J., and PERKINS, A. (1987). Trazadone/tryptophan for aggressive behavior. Lancet 1: 929–930.

    Article  PubMed  CAS  Google Scholar 

  48. MacINDOE, J. H., and TURKINGTON, R. W. (1973). Stimulation of human prolactin secretion by intravenous infusion of L-tryptophan. J. Clin. Investig. 52: 1972–1978.

    Article  PubMed  CAS  Google Scholar 

  49. SPRING, B. (1985). Effects of foods and nutrients on the behavior of normal individuals. In: Nutrition and the Brain. ( Wurtman, R. J., and Wurtman, J. J., eds.) 7, pp. 1–47. Raven Press, New York.

    Google Scholar 

  50. SPRING, B., MALLER, O., WURTMAN, J. J., DIGMAN, L., and COZOLINO, L. (1983). Effects of protein and carbohydrate meals on mood and performance. J. Psychiatr. Res. 17: 155–167.

    Article  CAS  Google Scholar 

  51. PRINZ, R. J., ROBERTS, W. A., and HARTMAN, E. (1980). Dietary correlates of hyperactive behavior in children. J. Consult. Clin. Psychol. 48: 760–769.

    Article  PubMed  CAS  Google Scholar 

  52. ROSENTHAL, N. E., and HEFFERMAN, M.M. (1985). Bulimia, carbohydrate craving, and depression: A central connection. In: Nutrition and the Brain. ( Wurtman, R. J., and Wurtman J. J., eds.) 7, pp. 139–166. Raven Press, New York.

    Google Scholar 

  53. WURTMAN, J. J., WURTMAN, R. J., GROWDON, J. H., LIPSCOMB, H. P., and ZEISEL, S. A. (1981). Carbohydrate craving in obese people: Supression by treatments affecting serotoninergic transmission. Int. J. Eating Disord. 1: 2–15.

    Article  Google Scholar 

  54. REID, R. (1985). Premenstrual syndrome. Current Problems in Obstetrics 8: 1–57.

    Google Scholar 

  55. VAN PRAAG, H. M., and LEMUS, C. (1985). Monoamine precursors in the treatment of psychiatric disorders. In: Nutrition and the Brain. ( Wurtman, R. J., and Wurtman, J. J., eds.) 7, pp. 89–138. Raven Press, New York.

    Google Scholar 

  56. ANDERSON, G. H. (1977). Regulation of protein intake by plasma amino acids. In: Advances in Nutritional Research. ( Draper, H. H., ed.) 1, pp. 145–166. Plenum Press, New York.

    Google Scholar 

  57. WURTMAN, J. J., and WURTMAN, R. J. (1979). Drugs that enhance central serotoninergic transmission diminish elective carbohydrate consumption by rats. Life Sci. 24: 895–904.

    Article  PubMed  CAS  Google Scholar 

  58. YOKOGOSHI, H., THEALL, C. L., and WURTMAN, R. J. (1986). Selection of dietary protein and carbohydrate by rats: Changes with maturation. Physiol. and Behavior 36: 972–982.

    Google Scholar 

  59. WURTMAN, J. J., and BAUM, M. (1980). Estrogen reduces total food and carbohydrate intake in female rats. Physiol. and Behavior 24: 823–827.

    Article  CAS  Google Scholar 

  60. WURTMAN, J. J., MOSES, P. L., and WURTMAN, R. J. (1983). Prior carbohydrate consumption affects the amount of carbohydrate that rats choose to eat. J. Nutr. 113: 70–78.

    PubMed  CAS  Google Scholar 

  61. KIM, S.-H., and WURTMAN, R. J. (1987). Selective effects of CGS 10686B, DL-fenfluramine or fluoxetine on nutrient selection. Physiol. and Behavior (Submitted).

    Google Scholar 

  62. WURTMAN, J. J., WURTMAN, R. J., MARK, S., TSAY, R., GILBERT, W., and GROWDON, J. H. (1985). D-fenfluramine selectively suppresses carbohydrate snacking by obese subjects. Int. J. Eating Disorders. 4: 89–99.

    Article  CAS  Google Scholar 

  63. CHAOULOFF, F., KENNET, G. A., SERRURRIER, B., MERINO, D., and CURZON, G. (1986). Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase in brain tryptophan during exercise in the rat. J. Neurochem. 46: 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  64. ACWORTH, I. N., MORGAN, B., and NEWSHOLME, E. A. (1987). Dopamine turnover is increased in the brains of untrained and trained rats after endurance exercise. In preparation.

    Google Scholar 

  65. CHAOULOFF, F., LAUDE, D., GUEZENNEC, Y., and ELGHOZI, J. L. (1986). Motor activity increases tryptophan, 5HIAA and HVA in ventricular CSF of the conscious rat. J. Neurochem. 46: 1313-1316.

    Google Scholar 

  66. BLISS, E. L., and AILION, J. (1971). Relationship between stress and activity to brain dopamine and homovanillic acid. Life Sci. 10: 1161–1169.

    Article  CAS  Google Scholar 

  67. RANSFORD, C. P. (1982). A role for amines in the antidepressant effect of exercise: A review. Med. Sci. Sports Exer. 14: 1–10.

    CAS  Google Scholar 

  68. BROWN, B. S., RAMIREZ, D. E., and TAUB, J. M. (1978). The prescription of exercise for depression. Phys. Sportsmed. 6: 34–45.

    Google Scholar 

  69. COHEN, E., and WURTMAN, R. J. (1976). Brain acetylcholine synthesis: Control by dietary choline. Science 191: 561–562.

    Article  PubMed  CAS  Google Scholar 

  70. SCHWARZ, J. C., LAMPART, C., and ROSE, C. (1972). Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem. 19: 801–810.

    Article  Google Scholar 

  71. MAHER, T. J., and WURTMAN, R. J. (1980). L-threonine administration increases glycine concentrations in the rat central nervous system. Life Sci. 26: 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  72. NADER, T. M. A., GROWDON, J. H., MAHER, T. J., and WURTMAN R. J. (1986). Lthreonine administration increases CSF glycine levels and suppresses spasticity. American Academy of Neurology Meeting. New York.

    Google Scholar 

  73. WOOD, J. L., and ALLISON, R. G. (1981). Effects of consumption of choline and lecithin on neurological and cardiovascular systems. In: FASEB: Technical Report, pp. 1–105. SRO Press, Washington.

    Google Scholar 

  74. SVED, A. F. (1983). Precursor control of the function of monoaminergic neurons. In: Nutrition and the Brain ( Wurtman, R. J., and Wurtman, J. J., eds.) 6, pp. 223–275. Raven Press, New York.

    Google Scholar 

  75. WURTMAN, R. J., LARIN, F., MOSTAFAPOUR, S., and FERNSTROM, J. D. (1974). Brain catechol synthesis: Control of brain tyrosine concentration. Science 185: 183-184.

    Article  Google Scholar 

  76. SCALLY, M. C., ULUS, I., and WURTMAN, R. J. (1977). Brain tyrosine levels control striatal dopamine synthesis in haloperidol-treated rats. J. Neural. Transm. 41: 1–6.

    Article  PubMed  CAS  Google Scholar 

  77. GIBSON, C. J., and WURTMAN, R. J. (1978). Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci. 22: 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  78. MELAMED, E., HEFTI, F., and WURTMAN, R. J. (1980). Tyrosine administration increases striatal dopamine release in rats with partial nigrostriatal lesions. Proc. Natl. Acad. Sci. USA 464: 4305-4309.

    Google Scholar 

  79. SVED, A. F., FERNSTROM, J. D., and WURTMAN, R. J. (1979). Tyrosine administration decreases serum prolactin levels in chronically reserpinized rats. Life Sci. 25: 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  80. EL MESTIKAWAY, S., GLOWINSKI, J., and HAMON, M. (1983). Tyrosine hydroxylase activation in depolarized dopaminergic terminals: Involvement of calcium. Nature 302: 830–832.

    Article  Google Scholar 

  81. LOVENBERG, W., AMES, M. M., and LERNER, P. (1978). Mechanisms of short-term regulation of tyrosine hydroxylase. In: Psychopharmacology: A Generation of Progress ( Lipton, M. A., DiMascio, A., and Killam, K. F., eds.), pp. 247–259. Raven Press, New York.

    Google Scholar 

  82. MILNER, J. D., and WURTMAN, R. J. (1986). Catecholamine synthesis: Physiological coupling to precursor supply. Biochem. Pharmacol. 35: 875–881.

    Article  PubMed  CAS  Google Scholar 

  83. IRIE, K., and WURTMAN, R. J. (1987). Release of norepinephrine from rat hypothalamic slices: Effects of desipramine and tyrosine. Brain Res. In press.

    Google Scholar 

  84. CONLAY, L. A., MAHER, T. J., and WURTMAN, R. J. (1981). Tyrosine increases blood pressure in hemorrhagic shock. Science 212: 559–560.

    Article  PubMed  CAS  Google Scholar 

  85. SVED, A. F., FERNSTROM, J. D., and WURTMAN, R. J. (1979). Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously-hypertensive rats. Proc. Natl. Acad. Sci. USA 76: 3511–3514.

    Article  PubMed  CAS  Google Scholar 

  86. GROWDON, J. H. (1979). Neurotransmitter precursors in the diet: Their use in the treatment of disease. In: Nutrition and the Brain ( Wurtman, R. J., and Wurtman, J. J., eds.) 3, pp. 117–181. Raven Press, New York.

    Google Scholar 

  87. LEHNERT, H., REINSTEIN, D. K., STROWBRIDGE, B. W., and WURTMAN, R. J. (1984). Neuro-chemical and behavioral consequences of acute, uncontrollable stress: Effects of dietary tyrosine. Brain Res. 303: 215–223.

    Article  PubMed  CAS  Google Scholar 

  88. REINSTEIN, D. K., LEHNERT, H., and WURTMAN, R. J. (1985). Dietary tyrosine suppresses the rise in plasma corticosterone following acute stress in rats. Life Sci. 37: 2157–2163.

    Article  PubMed  CAS  Google Scholar 

  89. BANDERET, L. E., LIEBERMAN, H. R., FRANCESCONI, R. P., GOLDMAN, R. F., SCHNAKEN-BERG, D. D., RAUCH, T. M., ROCK, P. B., and MEADORS, G. F. (1987). Development of a paradigm to assess nutritive and biochemical substances in humans: A preliminary report on the effects of tyrosine upon altitude-and cold-induced stress responses. In: Biochemical Enhancement of Performance. The “AGARD” Conference Proceedings. No. 415. Specialized Printing Services Lt., Loughton, Essex.

    Google Scholar 

  90. MILNER, J. D., IRIE, K., and WURTMAN, R. J. (1986). Phenylalanine inhibition and enhancement of endogenous dopamine release from rat striatal slices. J. Neurochem. 47: 1444–1448.

    Article  PubMed  CAS  Google Scholar 

  91. DURING, M. J., ACWORTH, I. N., and WURTMAN, R. J. (1987). An in vivo study of dopamine release in striatum: The effects of phenylalanine. In press. In: Dietary Phenylalanine and brain function ( Wurtman, R. J., and Ritter-Walker, E., eds.). Birkhauser, Boston.

    Google Scholar 

  92. IKEDA, M., LEVITT, M., and UDENFRIEND, S. (1967). Phenylalanine as substrate and inhibitor of tyrosine hydroxylase. Arch. Biochem. Biophys. 120: 420-427.

    Google Scholar 

  93. DURING, M. J., ACWORTH, I. N., and WURTMAN, R. J. (1987). Precursor influence on in vivo dopamine release: Regional effects of tyrosine. Brain Res. Submitted.

    Google Scholar 

  94. ANDEN, N. E., GRABOWSKA-ANDEN, M., LINDGREN, S., and THORNSTROM, U. (1983). Synthesis rate of dopamine: Difference between corpus striatum and limbic system as a possible explanation of variations in reactions to drugs. Nauyn-Schmiedeberg’s Arch. Pharmacol. 323: 193198.

    Google Scholar 

  95. BANNON, M. J., and ROTH, R. H. (1983). Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35: 53-68.

    Google Scholar 

  96. YOKOGOSHI, H., ROBERTS, C. H., CABALLERO, B., and WURTMAN, R. J. (1984). Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles. Am. J. Clin. Nutr. 40: 1–7.

    PubMed  CAS  Google Scholar 

  97. MAHER, T. J., and PINTO, J. M. B. (1987). Aspartame, phenylalanine, and seizures in experimental animals. In press. In: Dietary Phenylalanine and Brain Function ( Wurtman, R. J., and Ritter-Walker, E., eds.). Birkhauser, Boston.

    Google Scholar 

  98. JOHNS, D. R. (1987). Aspartame and headache. In press. In: Dietary Phenylalanine and Brain Function (Wurtman, R. J., and Ritter-Walker, E., eds.). Birkhauser, Boston.

    Google Scholar 

  99. NUTT, J. G., WOODWARD, W. R., HAMMARSTAD, J. P., and CARTER, J. H. (1984). The “on-off” phenomenon in Parkinson’s disease: Relation to levodopa absorption and transport. N. Eng. J. Med. 310: 483–488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acworth, I.N., During, M.J., Wurtman, R.J. (1988). Pprocesses That Couple Amino Acid Availability to Neurotransmitter Synthesis and Release. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics