Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 20))

  • 160 Accesses

Abstract

Synaptosomes are isolated, sealed synaptic nerve endings with intact membrane structure and therefore well suited for uptake and release studies of neurotransmitters (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. WHITTAKER, V. P. (1972). The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In: Methods of Neurochemistry (Fried, R., ed), VoI. 2, Marcel Dekker, Inc., New York, pp. 1–52.

    Google Scholar 

  2. HALVARSSON, G. B., KARLSSON, I., SELLSTROM, A. (1985). The use of 3H-gamma-aminobutyric acid for transport studies with isolated nerve-terminals from rat brain. Life Sci. 37: 209–216.

    Article  PubMed  CAS  Google Scholar 

  3. CHAN, P. H., KERLAN, R., FISHMAN, R. A. (1983). Reductions of gamma-aminobutyric acid and glutamate uptake and (Nat + K’)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40: 309–316.

    Article  PubMed  CAS  Google Scholar 

  4. DEBLER, E. A., SERSHEN, H., LAJTHA, A., GENNARO, J. F. Jr. (1986). Superoxide radical-mediated alteration of synaptosome membrane structure and high-affinity gamma-[14C]-aminobutyric acid uptake. J. Neurochem. 47: 1804–1813.

    Article  PubMed  CAS  Google Scholar 

  5. ZUCKER, R. S., LANDO, L. (1986). Mechanism of transmitter release: Voltage hypothesis and calcium hypothesis. Science 231: 574–579.

    Article  PubMed  CAS  Google Scholar 

  6. LOGAN, W. J., SNYDER, S. H. (1971). Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234: 297–299.

    Article  PubMed  CAS  Google Scholar 

  7. SIMON, J. R., MARTIN, D. L., KROLL, M. (1974). Sodium-dependent efflux and exchange of GABA in synaptosomes. J. Neurochem. 23: 981–991

    Article  PubMed  CAS  Google Scholar 

  8. DEBLER, E. A., LAJTHA, A. (1987). High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamic acid in synaptosomal (P2) tissue: A kinetic and substrate specificity analysis. J. Neurochem. 48: 1851–1856.

    Article  PubMed  CAS  Google Scholar 

  9. RHOADS, D. E., PETERSON, N. A., RAGHUPATHY, E. (1984). Iminoglycine transport system in synaptosomes and its interaction with enkephalins. Biochemistry 23: 117–121

    Article  PubMed  CAS  Google Scholar 

  10. KANNER, B. I. (1978). Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17: 1207–1211

    Article  PubMed  CAS  Google Scholar 

  11. ZAFRA, F., ARAGON, M. C., VALDIVIESO, F., GIMÉNEZ, C. (1984). (3-Alanine transport into plasma membrane vesicles derived from rat brain synaptosomes. Neurochem. Res. 9: 695–707.

    Google Scholar 

  12. ARAGON, M. C., GIMÉNEZ, C. (1986). Efflux and exchange of glycine by synaptic plasma membrane vesicles derived from rat brain. Biochim. Biophys. Acta 855: 257–264.

    Article  PubMed  CAS  Google Scholar 

  13. SIDHU, H. S., WOOD, J. D. (1986). Three uptake systems in synaptosomes for nipe cotic acid and beta-alanine. Neuropharm. 25: 555–558.

    Article  CAS  Google Scholar 

  14. WILSON, D. F., PASTUSZKO, A. (1986). Transport of cysteate by synaptosomes iso lated from rat brain: Evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate. J. Neurochem. 47: 1091–1097.

    Article  PubMed  CAS  Google Scholar 

  15. TALLAN, H. H., MOORE, S., STEIN, W. H. (1954). Studies of the free amino acids and related compounds in the tissues of the cat. J. Biol. Chem. 211: 927–939.

    PubMed  CAS  Google Scholar 

  16. IVERSEN, L. L., BLOOM, F. E. (1972). Studies of the uptake of [3H]-GABA and [3H]-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41: 131–143.

    Article  PubMed  CAS  Google Scholar 

  17. TURNER, A. J., WHITTLE, S. R. (1983). Biochemical dissection of the gamma-amino butyrate synapse. Biochem. J. 209: 29–41.

    PubMed  CAS  Google Scholar 

  18. SNYDER, S. H., YOUNG, A. B., BENNETT, J. P., MULDER, A. H. (1973). Synaptic biochemistry of amino acids. Fed. Proc. 32: 2039–2047.

    PubMed  CAS  Google Scholar 

  19. TROEGER, M. B., WILSON, D. F., ERECINSKA, M. (1984). The effect of thiol reagents on GABA transport in rat brain synaptosomes. FEBS Lett. 171: 303–308.

    Article  PubMed  CAS  Google Scholar 

  20. WOOD, J. D., SIDHU, H. S. (1986). Uptake of gamma-aminobutyric acid by brain tissue preparations: A reevaluation. J. Neurochem. 46: 739–744.

    Article  PubMed  CAS  Google Scholar 

  21. KANNER, B. I., RADIAN, R. (1985). Ion-coupled neurotransmitter transport across the synaptic plasma membrane. Ann. N.Y. Acad. Sci. 456: 153–161

    Article  PubMed  CAS  Google Scholar 

  22. ASAKURA, T., HOSHINO, M., KOBAYASHI, T. (1982). Effect of calcium ion on the release of gammaaminobutyric acid from synaptosomal fraction. J. Biochem. 92: 1919–1923.

    PubMed  CAS  Google Scholar 

  23. JONSSON, U., LUNDSTROM, M., SELLSTROM, A, EHINGER, B. (1986). Calcium-independent release of gamma-aminobutyrate from nerve processes in the developing rabbit retina. Neurosci. 17: 1235–1241

    Article  CAS  Google Scholar 

  24. MARTIN, D. L. (1976). Carrier-mediated transport and removal of GABA from synaptic regions. In: GABA in Nervous System Function ( Roberts, E., Chase, T. N., Tower, D. B., eds.), Raven Press, New York, pp. 347–386.

    Google Scholar 

  25. LEVI, G., BANAY-SCHWARTZ, M., RAITERI, M. (1978). Uptake, exchange and release of GABA in isolated nerve endings. In: Amino Acids as Chemical Transmitters ( Fonnum, F., ed.), Plenum Press, New York, pp. 327–350.

    Google Scholar 

  26. ARIAS, C., SITGES, M., TAPIA, R. (1984). Stimulation of [3Hjgamma-aminobutyric acid release by calcium chelators in synaptosomes. J. Neurochem. 42: 1507–1514.

    Article  PubMed  CAS  Google Scholar 

  27. REDBURN, D. (1978). Relationship between synaptosomal uptake and release of [14C]GABA, [14C]diaminobutyric acid and [14C]3-alanine. J. Neurochem. 31: 939–945.

    Article  PubMed  CAS  Google Scholar 

  28. COTMAN, C. W., HAYCOCK, J. W., WHITE, W. F. (1976). Stimulus-secretion coupling processes in brain: Analysis of noradrenaline and gamma-aminobutyric acid release. J. PhysioL 254: 475505.

    Google Scholar 

  29. NADLER, J. V., WHITE, W. F., VACA, K. W., REDBURN, D. A., COTMAN, C. W. (1977). Characterization of putative amino acid transmitter release from slices of rat dentate gyrus. J. Neurochem. 29: 279–290.

    Article  PubMed  CAS  Google Scholar 

  30. SHANK, R. P., SCHNEIDER, C. R., TIGHE, J. J. (1987). Ion dependence of neurotransmitter uptake: Inhibitory effects of ion substitutes. J. Neurochem. 49: 381–388.

    Article  PubMed  CAS  Google Scholar 

  31. RAITERI, M., FEDERICO, R., COLETTI, A., LEVI, G. (1975). Release and exchange studies relating to the synaptosomal uptake of GABA. J. Neurochem. 24: 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  32. O’FALLON, F. V., BROSEMER, R. W., HARDING, J. W. (1981). The Na’, K’-ATPase: A plausible trigger for voltage-independent release of cytoplasmic neuro-transmitters. J. Neurochem. 36: 369378.

    Google Scholar 

  33. NOTO, T, HASHIMOTO, H., NAKAO, J., KAMIMURA, H., NAKAJIMA, T. (1986). Spontaneous release of gamma-aminobutyric acid formed from putrescine and its enhanced Ca2’-dependent release by high K’ stimulation in the brains of freely moving rats. J. Neurochem. 46: 1877–1880.

    Article  PubMed  CAS  Google Scholar 

  34. FONNUM, F. (1984). Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42: 1–11

    Article  PubMed  CAS  Google Scholar 

  35. TAKAGAKI, G., KONAGAYA, H. (1985). Properties of the uptake and release of neurotransmitter glutamate in cerebral cortical tissue of guinea pigs. Neurochem. Res. 10: 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  36. SCHOUSBOE, A., DREJER, J., HERTZ, L. Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures. In: Glutamine and Glutamate in Mammals (Kvamme, E., ed.), CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  37. FERKANY, J., COYLE, J. T. (1986). Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J. NeuroscL Res. 16: 491–503.

    Article  CAS  Google Scholar 

  38. WARNER, S. J. C., CANTRILL, R. C., BRENNAN, M. J. W. (1981). Differential action of adenosine triphosphate on high affinity transport of L-glutamate and L-aspartate in rat brain synaptosomes. Life Sci. 28: 163–165.

    Article  PubMed  CAS  Google Scholar 

  39. ARBUTHNOT, P. B., CANTRILL, R. C. (1985). Purine nucleoside and nucleotide regulation of high affinity [3H]glutamate and [3H]aspartate uptake into rat brain synaptosomes. Int J. Biochem. 17: 753–755.

    Article  PubMed  CAS  Google Scholar 

  40. KANNER, B. I., RADIAN, R. (1986). Mechanisms of reuotake of neurntransmittarc from the svnantic cleft. In: Exitarory Amino Acids ( Roberts, P. J., Storm-Mathisen, J., Bradford, H. F., eds.), Macmillan Press, London, pp. 159–172.

    Google Scholar 

  41. KRAMER, K., BAUDRY, M. (1984). Low concentrations of potassium inhibit the Na-dependent [3Hjglutamate binding to rat hippocampal membranes. Eur. J. PharmacoL 102: 155–158.

    Article  PubMed  CAS  Google Scholar 

  42. DANBOLT, N. C., STORM-MATHISEN, J. (1986). Inhibition by K’ of Na’-dependent D-aspartate uptake into brain membrane saccules. J. Neurochem. 47: 825–830.

    Article  PubMed  CAS  Google Scholar 

  43. MENA, E. E., FAGG, G. E., COTMAN, C. W. (1982). Chloride ions enhance L-glutamate binding to rat brain synaptic membranes. Brain Res. 243: 378–381

    Article  PubMed  CAS  Google Scholar 

  44. ZACZEK, R., ARLIS, S., MARKE, A., MURPHY, T., DRUCKER, H., COYLE, J. T. (1987). Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site. NeuropharmacoL 26: 281–287.

    Article  CAS  Google Scholar 

  45. MANGAN, J. L, WHITTAKER, V. P. (1966). The distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98: 128–137.

    PubMed  CAS  Google Scholar 

  46. DISBROW, J. K., GERSHTEN, M. J., RUTH, J. A. (1982). Uptake of L-[3H] glutamic acid by crude and purified synaptic vesicles from rat brain. Biochem. Biophys. Res. Commun. 108: 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  47. NAITO, S. UEDA, T. (1985). Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44: 99–109.

    Article  PubMed  CAS  Google Scholar 

  48. STORM-MATHISEN, J., LEKNES, A. K., BORE, A. T., VAALAND, J. L., EDMINSON, P., HAUG, F. M. S., OTTERSEN, O. P. (1983). First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520.

    Article  Google Scholar 

  49. VIRGILI, M., POLI, A., CONTESTABILE, A., MIGANI, P., BARNABEI, D. (1986). Synaptosomal release of newly-synthetized or recently accumulated amino acids. Differential effects of kainic acid on naturally occurring excitatory amino acids and on [D-3H]aspartate. Neurochem. Int 9: 29–33.

    Article  PubMed  CAS  Google Scholar 

  50. MARCHBANKS, R. M. (1975). The chloride content, anion deficit and volume of synaptosomes. J. Neurochem. 25: 463–470.

    Article  PubMed  CAS  Google Scholar 

  51. HARDY, J. A., BOAKES, R. J., THOMAS, D. J., E., KIDD, A. M., EDWARDSON, J. A., VIRMANI, M., TURNER, J., DODD, R. R. (1984). Release of aspartate and glutamate caused by chloride reduction in synaptosomal incubation media. J. Neurochem. 42: 875–877.

    CAS  Google Scholar 

  52. NICHOLLS, D. G., SIHRA, T. S. (1986). Synaptosomes possess an exocytotic pool of glutamate. Nature 321: 772–773.

    Article  PubMed  CAS  Google Scholar 

  53. FEASEY, K. J., LYNCH, M. A., BLISS, T. V. R. (1986). Long-term potentiation is associated with an increase in calcium-dependent potassium release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat. Brain Res. 364: 39–44.

    Article  PubMed  CAS  Google Scholar 

  54. LYNCH, M. A., BLISS, T. V. P. (1986). Long-term potentiation of synaptic transmission in the hippo-campus of the rat; Effect of calmodulin and oleoyl-acetyl-glycerol on release of [3H]glutamate. Neurosci Lett. 65: 171–176.

    Article  PubMed  CAS  Google Scholar 

  55. HU, G. Y., HVALBY, O., WALAAS, S. I., ALBERT, K. A., SKJEFLO, P., ANDERSEN, P., GREENGARD, R. (1987). Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328: 426–429.

    Article  PubMed  CAS  Google Scholar 

  56. PERRY, T. L. Glutamine, glutamate and GABA in human diseases. In: Glutamine and Glutamate in Mammals (Kvamme, E., ed.), CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  57. KVAMME, E. (1983). Glutamine. In: Handbook of Neurochemistry (Lajtha, A., ed.), Vol. 3, 2nd ed., Plenum Press, New York, pp. 405–422.

    Google Scholar 

  58. MINN, A., BESAGNI, D. (1983). Uptake of L-glutamine into synaptosomes. Is the gamma-glutamyl cycle involved? Life Sci. 33: 225–232.

    Article  PubMed  CAS  Google Scholar 

  59. KVAMME, E., SCHOUSBOE, A., HERTZ, L, TORGNER, I. A., SVENNEBY, G. (1985). Developmental change of endogenous glutamate and gamma-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem. Res. 10: 993–1008.

    Article  PubMed  CAS  Google Scholar 

  60. JOHANSEN, L, ROBERG, B., KVAMME, E. (1987). Uptake and release for glutamine and glutamate in a crude synaptosomal fraction from rat brain. Neurochem. Res. 12: 135–140.

    Article  PubMed  CAS  Google Scholar 

  61. KVAMME, E., LENDA, K. (1981). Evidence for compartmentalization of glutamate in rat brain synaptosomes using the glutamate sensitivity of phosphate-activated glutaminase as a functional test. Neurosci. Lett 25: 193–198.

    Article  PubMed  CAS  Google Scholar 

  62. BRADFORD, H. J., WARD, H. K., THOMAS, A. J. (1978). Glutamine–a major substrate for nerve endings. J. Neurochem. 30: 1453–1459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kvamme, E., Roberg, B., Johansen, L. (1988). Uptake and Release of Amino Acids from Synaptosomes. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics