Skip to main content

The New Paradigm: Sympathetic Neurotransmission by Lateral Interaction Between Single Mixed Quanta Acting in Two Different Biophases

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

Numerous new findings challenge widely accepted views of the microanatomical basis and the chemical complexity of neuroeffector communication in many systems (Burnstock 1976, Dismukes 1979, Schmitt 1984,Vizi 1985, Changeux 1986, Eccles 1986, Hökfelt et al 1986, Iversen 1986). The aim of this mini-review is to discuss five aspects of an emerging new paradigm of sympathetic neurotransmission (Burnstock 1986, Lundberg and Hökfelt 1986, Stjärne 1986a,b, Stjärne and Lundberg 1986), namely its view on (1) the relative roles of the different sympathetic messengers, (2) the factors determining the composition of the ‘transmitter cocktail’ the nerve impulse releases from a varicosity, (3) the intermittent and monoquantal secretory activity of individual varicosities, (4) the heterogeneity of varicosities and the complementary roles of quanta released into the ‘intra-’ or ‘extrajunctional’ biophases, and (5) the conditions determining whether a released messenger will act directly and phasically (in ‘transmitter mode’) or indirectly and tonically (in ‘modulator’ mode).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts P, Bartfai T and Stjarne L (1981) Site(s) and ionic basis of a-autoinhibition and facilitation of [3H]noradrenaline secretion in guinea-pig vas deferens. J Physiol (Lond) 312: 297–334.

    CAS  Google Scholar 

  • Baines A.J. (1987) Synapsin I and cytoskeleton. Nature. 326: 646.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum CB and Heuser JE (1979) Morphological studies of stimulated adrenergic axon varicosities in the mouse vas deferens J Cell Biol 80: 310–325

    CAS  Google Scholar 

  • Bennett MR (1973) Structure and electrical properties of the autonomic neuromuscular junction. Phil Trans R Soc Lond B 265: 25–34.

    Article  CAS  Google Scholar 

  • Bevan JA, Chesher GB and Su C (1969) Release of adrenergic transmitter from termina lexus in artery. Agents and Actions 1: 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Bevan JA, Tayo FM, Rowan RA and Bevan RD (1984) Presynaptic a-receptor control of adrenergic transmitter release in blood vessels. Fed Proc 43: 1365–1370.

    PubMed  CAS  Google Scholar 

  • Blakeley AGH and Cunnane TC (1979) The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: An electrophysiological study. J Physiol (Lond) 296: 85–96.

    CAS  Google Scholar 

  • Blakeley AGH, Mathie A and Petersen SA (1984) Facilitation at single release sites of a sympathetic neuroeffector junction in the mouse. J Physiol (Lond) 349: 57–71.

    CAS  Google Scholar 

  • Blakeley AGH, Mathie A and Petersen SA (1986) Interactions between the effects of yohimbine, clonidine and [Ca]O on the electrical response of the mouse vas deferens. Br J Pharmacol 88: 807–814.

    PubMed  CAS  Google Scholar 

  • Bolton TB and Large WA (1986) Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves. Quart J Exp Physiol 71: 1–28.

    CAS  Google Scholar 

  • Brock JA and Cunnane TC (1987) Relation between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature 326: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R.D. and Cheek T.R. (1987) Role of fodrin in secretion. Nature, 326: 448.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126: 67–91.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G and Costa M (1975) Adrenergic Neurons. Chapman and Hall, London.

    Google Scholar 

  • Burnstock G and Holman ME (1966) Junction potentials at adrenergic synapses. Pharmacol Rev 18: 481–493.

    PubMed  CAS  Google Scholar 

  • Bahler M and Greengard P (1987) Synapsin I bundles F-actin in a phosphorylation dependent manner. Nature 326: 704–707

    Article  PubMed  CAS  Google Scholar 

  • Changeux J-P (1986) Coexistence of neuronal messengers and molecular selection. Prog Brain Res 68: 373–403.

    Article  PubMed  CAS  Google Scholar 

  • Cheung DW (1982) Two components in the cellular response of rat tail arteries to nerve stimulation. J Physiol (Lond) 328: 461–468.

    CAS  Google Scholar 

  • Costa M, Furness J.B. and Gibbins I.L. (1986) Chemical coding of enterie neurons. In: T. Höfelt, K. Fuxe and B. Pernow. Progress in Brain Research. Vol. 68, 217–237.

    Google Scholar 

  • Cunnane TC and Stjarne L (1984) Transmitter secretion from individual varicosities of guinea-pig and mouse vas deferens: Highly intermittent and monoquantal. Neuroscience 13: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrflm A and Haggendal J (1966) Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta physiol scand 67: 271–277.

    Article  Google Scholar 

  • Dahlstrom A, Haggendal J and Hökfelt T (1966) The noradrenaline content of the nerve terminal varicosities of sympathetic adre nergic neurons in the rat Acta physioI scand S7: 289–294.

    Google Scholar 

  • Dismukes RK (1979) New concepts of molecular communication among neurons. Behav Brain Sci 2: 409–448.

    Article  Google Scholar 

  • Eccles JC (1986) Chemical transmission and Dale’s principle. Prog Brain Res 68: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Euler US von (1956) Noradrenaline. Carles C. Thomas Publ., Springfield, I II.

    Google Scholar 

  • Fedan JS, Hogaboom GK, O’Donnell JP, Colby J and Westfall DP (1981) Contribution by purines to the neurogenic response of the vas deferens of the guinea pig Eur J Pharmacol 69: 41–53

    CAS  Google Scholar 

  • Fillenz M (1977) The factors which provide short-term and longterm control of transmitter release Prog NeurobiolB: 251–278

    Google Scholar 

  • Finkel AS, Hirst GDS, van Helden DF (1984) Some properties of the excitatory junction current recorded from submucosal arterioles of the guinea-pig ileum. J Physiol Lond351: 87–98.

    Google Scholar 

  • Fredholm BB, Fried G and Hedqvist P (1982) Origin of adenosine released from rat vas deferens by nerve stimulatin Eur J Pharmac79: 233–243.

    Google Scholar 

  • Folkow B, Haggendal J and Lisander B (1967) Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta Physiol Scand Suppl 307: 1–38.

    PubMed  CAS  Google Scholar 

  • Folkow B and Haggendal J (1970) Some aspects of the quantal release of the adrenergic transmitter. Bayer-Symposium II. Springer, Berlin: 91–97.

    Google Scholar 

  • Gabella G. (1981) Structure of smooth muscles. In; E. Bulbring, A.F. Brading, A.W. Jones and T. Tomita (eds), Smooth muscle, pp 1–46, Edward Arnold London.

    Google Scholar 

  • Griffith SG, Crowe R, Haven AJ and Burnstock G (1982) Regional differences in the density of perivascular nerves and varicosities. Noradrenaline content and responses to nerve stimulation in the rabbit ear artery. Blood Vessels 19: 41–53

    Google Scholar 

  • Haefely W (1972) Electrphysiology of the adrenergic neuron. In: Blaschko H and Muscholl. Catecholamines. Handbook of Experimental Pharmacology, Vol. 33. Springer Berlin: 661–725.

    Google Scholar 

  • Hirst GDS and Neild TO (1980) Some properties of spontaneous excitatory junction potentials recorded from arterioles of guinea-pig. J Physiol Lond303: 43–60.

    Google Scholar 

  • Hökfelt T (1969) Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta Physiol Scand 76: 427–440.

    Article  PubMed  Google Scholar 

  • Hökfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Björklund H, Olson L, Lindh B, Elfvin L-G, Lundberg JM, Lindgren JA, Samuelsson B, Pernow B, Terenius L, Post C, Everitt B and Goldstein M (1986) Coexistence of neuronal messengers — an overview. Prog Brain Res 68: 33–70.

    Article  PubMed  Google Scholar 

  • Iversen L.L. (1986) Chemical signalling in the nervous system. In: T.Hökfelt, K. Fuxe and B. Pernow. Progress in Brain Research. Vol. 68, 15–21.

    Google Scholar 

  • Klein RL (1982) Chemical composition of the large noradrenergic vesicles. In: Klein RL, Lagercrantz H and Zimmermann H (eds). Neurotransmitter Vesicles. Academic Press, London: 133–150.

    Google Scholar 

  • Korn H (1984) What central inhibitory pathways tell us about mechanisms of transmitter release. Exp Brain Res Suppl 9: 201–224.

    Article  Google Scholar 

  • Kugelgen I v and Starke K (1985) Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vascontriction in rabbit mesenteric artery. J. Physiol., 367: 435–455.

    Google Scholar 

  • Lagercrantz H and Fried G (1982) Chemical composition of the small noradrenergic vesicles. In: Klein RL, Lagercrantz H and Zimmermann H (eds). Neurotransmitter Vesicles. Academic Press London: 175–188.

    Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60: 481–497.

    PubMed  CAS  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmac Rev 32: 337–362.

    Google Scholar 

  • Lundberg JM and Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons — functional and pharmacological implications. Prog Brain Res 68: 241–262.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum L.A. and Burnstock G. (1983) Evidence that ATP acts as a co-transmitter with noradrenaline in sympathetic nerves supplying the guinea-pig vas deferens. Europ. J. Pharmacol., 92: 161–163.

    Article  CAS  Google Scholar 

  • Merrillees N.R.C. (1968) The nervous enviroment of individual smooth muscle cells of the guinea-pig vas deferens. J. Cell. Biol., 37: 794–817.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu I. (1987) The effect of reserpine on sympathetic, purinergic neurotransmission in the isolated mesenteric artery of the dog: a pharmacological study. Br. J. Pharmc 91: 467–474.

    CAS  Google Scholar 

  • Neild TO (1987) Actions of neuropeptide Y on innervated and denervated rat tail arteries. J Physiol (Lond) 386: 19–30.

    CAS  Google Scholar 

  • Neild TO and Hirst GDS (1984) The y-connection’: a reply. Trends Pharmac Sci February: 56–57.

    Google Scholar 

  • Pelletier G, Steinbusch HW and Verhofstad A (1981) Immunoreactive substance P and serotonin present in the same dense core vesicles. Nature 293: 71–7

    Article  PubMed  CAS  Google Scholar 

  • Potter DD, Matsumoto SG, Landis SC, Sah DWY and Furshpan EJ (1986) Transmitter status in cultured sympathetic principal neurons: plasticity, graded expression and diversity Prog Brain Res 68: 103–120.

    CAS  Google Scholar 

  • Ryan LJ, Tepper JM, Sawyer SF, Young SJ and Groves PM (1985) Autoreceptor activation in cental monoamine neurons: modulation of neurotransmitter release is not mediated by intermittent axonal conduction. Neuroscience 15: 925–93

    Article  PubMed  CAS  Google Scholar 

  • Schipper J, Tilders JH and Mulder H (1980) Extraneuronal catecholamine in the iris of the rat: A consequence of nonsynaptic neurotransmission? Neuroscience 5: 745–751.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt F.O. (1984) Molecular regulations of brain function: A new view. Neuroscience, 13: 991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon P and Burnstock G (1984) Inhibition of excitatory junction potentials in guinea- pig vas deferens by a, p-methylene-ATP: Further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol 100: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon P and Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol (Lond) 347: 561–580.

    CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124.

    Article  PubMed  CAS  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Ann Rev Phamacol Toxicol 21: 7–30.

    Article  CAS  Google Scholar 

  • Starke K (1987) Presynaptic a-autoreceptors. Rev Physiol Biochem Pharmacol 107: 73–146.

    Article  PubMed  CAS  Google Scholar 

  • Stjärne L (1975) Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In: Iversen LL, Iversen SD and Snyder SH (eds) Handbook of Psychopharmacology. Vol. 6. Plenum Press, New York: 179–233.

    Google Scholar 

  • Stjärne L (1981) On sites and mechanisms of presynaptic control of noradrenaline secretion. In: Stjärne L, Hedqvist P, Lagercrantz H and Wennmalm A (eds). Chemical Neurotransmission 75 years. Academic Press, London: 257–272.

    Google Scholar 

  • Stjärne L (1985) Scope and mechanisms of control of stimulus-secretion coupling in single varicosities of sympathetic nerves. Clinical Science 68: (Suppl. 10), 77s–81s.

    PubMed  Google Scholar 

  • Stjärne L (1986a) New paradigm: Sympathetic neurotransmission by lateral interaction between secretory units? News in Physiological Sciences 1: 103–106.

    Google Scholar 

  • Stjärne L (1986b) New paradigm: sympathetic transmission by multiple messengers and lateral interaction between monoquantal release sites? Trends in Neurosci 9: 547–548.

    Article  Google Scholar 

  • Stjärne L (1987) New paradigm: A digital model of feedback regulation of sympathetic neurotransmitter secretion. In: Vanhoutte PM (ed) Proc Symp MMechanisms of Vasodilatationf, Rochester, Minnesota. Raven Press. In press.

    Google Scholar 

  • Stjärne L and Lundberg JM (1986) On the possible roles of noradrenaline, adenosine 5’-triphosphate and neuropeptide Y as sympathetic cotransmitters in the mouse vas deferens. Proa Brain Res 68: 263–278.

    Article  Google Scholar 

  • Stjärne L and Astrand P (1984) Discrete events measure single quanta of adenosine 5’-triphosphate secreted from sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 13: 21–28.

    Article  PubMed  Google Scholar 

  • Stjärne L and Astrand P (1985a) Relative pre- and postjunctional roles of noradrenaline and adenosine 5’-triphosphate as neurotransmitters of the sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 14: 929–946.

    Article  PubMed  Google Scholar 

  • Stjärne L and Astrand P (1985b) Site of action of presynaptic inhibition mediated via adrenoceptors. In: Szabadi E, Bradshaw CM and Nahorski SR (eds). Pharmacology of Adrenoceptors. Macmillan: 157–166.

    Google Scholar 

  • Stjärne L, Lundberg JM and Astrand P (1986) Neuropeptide Y — A cotransmitter with noradrenaline and adenosine 5’-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electropharmacological study. Neuroscience 18: 151–166.

    Article  PubMed  Google Scholar 

  • Suzuki H (1983) An electrophysiological study of excitatory neuromuscular transmission in the guinea-pig main pulmonary artery. J Physiol (Lond) 336: 47–59.

    CAS  Google Scholar 

  • Thureson-Klein Å (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10: 245–252.

    Article  Google Scholar 

  • Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Prog Neurobiol 12: 181–290.

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES (1985) Non-synaptic Interactions Between Neurons: Modulation o Neurochemical Transmission. John Wiley & Sons. Chichester, New York, Brisbane, Toronto, Singapore.

    Google Scholar 

  • Wakade AR and Wakade TD (1984) Do storage vesicle of peripheral sympathetic nerves have more than one life cycle? In: Catecholamines: Basic and Peripheral Mechanism. Pergamon Press: 89–103.

    Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57: 659–728.

    PubMed  CAS  Google Scholar 

  • Zhu PC, Thureson-Klein Å and Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: A possible mechanism for neuropeptide release. Neuroscience 19: 43–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stjärne, L. (1988). The New Paradigm: Sympathetic Neurotransmission by Lateral Interaction Between Single Mixed Quanta Acting in Two Different Biophases. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics