Skip to main content

Specializations of Subsynaptic Cytoplasms. Comparison of Axospinous Synapses and Neuromuscular Junctions

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

When chemical synapses of the axosomatic, axodendritic and neuromuscular types are compared at ultrastructural level, the pattern of their organization seems fairly uniform, as regards the axon terminals and the complexes formed by pre- and postsynaptic membranes, and by the electron-dense structures attached to the cytoplasmic surfaces of these membranes. However, the same does not always apply to the deep part of the subsynaptic cytoplasm, which may display particularities of various kinds, relating, for example,to the smooth endoplasmic reticulum or to the cytoskeleton. The subsynaptic cytoplasm may also contain, under the postsynaptic density, an electron-dense material whose distribution varies, depending on the type of synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akert K, Pfenniger K and Sandri C (1967) The fine structure of synapses in subfornical organ of the cat. Z.Zellforsch. 81: 537–556

    Article  PubMed  CAS  Google Scholar 

  • Atwood HL and Lnenicka GA (1986) Structure and function in synapses: emerging correlations. Trends Neuro Sci. 7: 229–233

    Google Scholar 

  • Barrantes FJ,Neugebauer D-Ch,Zingsheim HP (1980) Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor fro m Torpedo marmorata.FEBS Lett. 112: 73–78

    Google Scholar 

  • Bloch RJ and Hall ZW (1983) Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alphaactinin, and filamin. J. Cell Biol. 97: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC, Carr C, Pedersen SE and Cohen JB (1987) Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J. Cell Biol. 105: 1829–1846

    Article  PubMed  CAS  Google Scholar 

  • Burden SJ (1982) Identification of an intracellular postsynaptic antigen at the frog neuromuscular junction. J. Cell Biol. 94: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Burden SJ (1985) The subsynaptic 43-kDa protein is concentrated at developing nerve-muscle synapses . Proc.Natl.Acad.Sci.USA 82:8270– 8273

    Google Scholar 

  • Burden SJ (1987) The extracellular matrix and subsynaptic sarcoplasm at nerve-muscle synapses. In: Salpeter MM (ed).The vertebrate neuromuscular junction. Alan R Liss New York: 163–186

    Google Scholar 

  • Burden SJ, DePalma RL and Gottesman GS (1983) Crosslinking of proteins in acetylcholine receptor-rich membranes association between the beta- subunit and the 43 kd subsynaptic protein. Cell 35: 687–692

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Gray EG and Barron J (1983) Cytochemical localization of calcium in the dendritic spine apparatus of the cerebral cortex and at synaptic sites in the cerebellar cortex. J.Anat.(Lond) 136: 634–635

    Google Scholar 

  • Caceres A, Payne MR, Binder LI and Stewart 0 (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc.Natl.Acad.Sci.USA 80: 1738–1742

    Google Scholar 

  • Cartaud J (1980) A critical re-evaluation of the structural organization of the excitable membrane in Torpedo marmorata electric organ. In: Taxi J (ed). Ontogenesis and functional mechanisms of peripheral synapses. Elsevier, North Holland. Amsterdam.New York: 199–210

    Google Scholar 

  • Cartaud J,Kordeli C, Nghiêm H-O and Changeux J-P (1983) La protéine de 43,000 dalton: pièce intermédiaire assurant l’ancrage du récepteur cho- linergique au cytosquelette sous-neural ? C.R.Acad.Sci.Paris 297: 285–289

    Google Scholar 

  • Cartaud J, Sobel A, Rousselet A, Devaux PF and Changeux J-P (1981) Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ.J.Cell Biol. 90: 418–426

    Article  PubMed  CAS  Google Scholar 

  • Coss RG and Perkel DH (1985) The function of dendritic spines: a review of theoretical issues. Behav. and neur. biol. 44: 151–185

    Article  CAS  Google Scholar 

  • Couteaux R (1945) Rapports du buisson de Kühne et des noyaux musculaires chez la Grenouille. C. R. Soc. Biol. 139: 641–644

    CAS  Google Scholar 

  • Couteaux R (1947) Contribution à l’étude de la synapse myoneurale. Rev. canad. Biol. 6: 563–711

    Google Scholar 

  • Couteaux R (1952) Le système à “petites” fibres nerveuses et à contraction “lente” contribution à son identification histologique sur les muscles de la Grenouille. C. R. Assoc. Anat. 39: 264–269

    Google Scholar 

  • Couteaux R (1955) Localization of cholinesterases at neuromuscular junctions. Internat. Rev. Cytol. 4: 335–375

    Article  Google Scholar 

  • Couteaux R (1958) Morphological and cytochemical observations oh the post-synaptic membrane at motor end-plates and ganglionic synapses. Exper.Cell Res.,Suppl. 5: 294–322

    CAS  Google Scholar 

  • Couteaux R (1980) L’organisation postsynaptique de la jonction neuromusculaire. IniFondation Singer-Polignac(ed). La transmission neuromusculaire. Les médiateurs et le “milieu intérieur”. (Col 1. internat. 1978 Paris) Masson 1980 Paris New York Barcelona Milano: 39–70

    Google Scholar 

  • Couteaux R (1981) Structure of the subsynaptic sarcoplasm in the interfold of the frog neuromuscular junction. J. Neurocyt. 10: 947–962

    Article  CAS  Google Scholar 

  • Couteaux R and Pécot-Dechavassine M (1968) Particularités structurales du sarcoplasme sous-neural. C.R.Acad.Sci. 266D: 8–10

    Google Scholar 

  • Couteaux R and Pécot-Dechavassine M (1970) Vésicules synaptiques et poches au niveau des “zones actives” de la jonction neuromusculaire. C. R. Acad. Sci. 271D: 2346–2349

    Google Scholar 

  • Dreyer F, Peper K, Akert K, Sandri C and Moor H (1973) Ultrastructure of the ‘active zone’ in the frog neuromuscular junction. Brain Res. 62: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Dyson SE and Jones DG (1984) Synaptic remodelling during development and maturation: junction differentiation and splitting as a mechanism for modifying connectivity. Dev.Brain Res. 13: 125–137

    Article  Google Scholar 

  • Ellisman MH, Rash JE, Staehelin LA and Porter KR (1976) Studies of excitable membranes 11.A comparison of specializations at neuromuscular junctions and non-junctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J. Cell Biol. 68: 752–774

    Article  PubMed  CAS  Google Scholar 

  • Fertuck HC and Salpeter MM (1974) Localization of acetylcholine receptor by I-alpha-bungarotoxin binding at mouse motor endplates. Proc. Natl. Acad. Sci. USA 71: 1376–1378

    Article  PubMed  CAS  Google Scholar 

  • Fertuck HC and Salpeter MM (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J. Cell Biol. 69: 144–158

    Article  PubMed  CAS  Google Scholar 

  • Fifkova E and Van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J. Neurocytol. 6: 211–230

    Article  PubMed  CAS  Google Scholar 

  • Froehner SC (1984) Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies. J. Cell Biol. WF88–96

    Google Scholar 

  • Froehner SC, Gulbrandsen V, Hyman C, Jeng AY, Neubig RR and Cohen JB (1981) Immunofluorescence localization at the mammalian neuromuscular junction of the Mr43,000 protein of Torpedo postsynaptic membranes. Proc.Natl.Acad. Sci.USA 78: 5230–5234

    Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex an electron microscope study. J. Anat.(Lond) 93: 420–433

    CAS  Google Scholar 

  • Gulley RL and Reese TS (1981) Cytoskeletal organization at the postsynaptic complex. J. Cell Biol. 91: 298–302

    Article  PubMed  CAS  Google Scholar 

  • Hall ZW, Lubit BW and Schwartz JH (1981) Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90: 789–792

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SL, McLaughlin M and Karlin A (1979) Formation of disulfide-1inked oligomers of acetylcholine receptor in membranes from Torpedo electric tissue. Biochemistry 18: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Heuser, JE (1980) 3-D visualization of membrane and cytoplasmic specializations of the frog neuromuscular junction. In: Taxi J (ed). Ontogenesis and functional mechanisms of peripheral synapses. INSERT symposium n°13. Elsevier,North-Holland. Amsterdam: 139–155

    Google Scholar 

  • Heuser JE, Reese TS and Landis DMD (1974) Functional changes in frog neuromuscular junctions studied with freeze-fracture. J.Neurocytol. 3: 109–131

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE and Salpeter SR (1979) Organization of acetylcholine receptors in quick-frozen,deep-etched, and rotary-replicated Torpedo postsynaptic membranes. J.Cell Biol. 82: 150–173

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N and Heuser JE (1982) Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J.Neurocytol. 11: 487–510

    Article  PubMed  CAS  Google Scholar 

  • Jones EG and Powell TPS (1969) Morphological variations in the dendritic spines of the cortex. J.Cell Sci. 5: 509–529

    PubMed  CAS  Google Scholar 

  • Klymkowsky MW, Heuser JE and Stroud RM (1980) Protease effects on the structure of acetylcholine receptor membran e from Torpedo californica. J.Cell Biol. 85: 823–838

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E, Cartaud J, Nghiem H-O, Pradel L-A, Dubreuil C, Paulin D and Changeux J-P (1986) Evidence for a polarity in the distribution of proteins from the cytoskeleton in Torpedo marmorata electrocytes. J.Cell Biol.102:748– 761

    Google Scholar 

  • Landis DMD and Reese TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J.Cell Biol. 97: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Lännergren J (1975) Structure and function of twitch and slow fibres in amphibian skeletal muscle. In: Lennerstrand G and Bach-y-Rita P (eds). Basic mechanisms of ocular motility and their clinical implications.Pergamon 1975 Oxford: 63–84

    Google Scholar 

  • Lannergren J (1979) An intermediate type of muscle fibre in Xenopus laevis. Nature 279: 254–256

    Article  PubMed  CAS  Google Scholar 

  • Lannergren J and Smith RS (1966) Types of muscle fibers in toad skeletal muscle. Acta Physiol. Scand. 68: 263–274

    Article  Google Scholar 

  • Le Beux YJ and Willemot J (1975a) An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labelling. I.The perikaryon, the dendrites and the axon. Cell Tissue Res. 160: 1–36

    Google Scholar 

  • Le Beux YJ and Willemot J (1975b) An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labelling. II. The synapses. Cell Tissue Res. 160: 37–68

    Google Scholar 

  • Lo MMS, Garlang PB, Lamprecht J and Barnard EA (1980) Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization. FEBS Lett. 111: 407–412

    Google Scholar 

  • McGraw F, Somlyo AV, Blaustein MP (1980) Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J.Cell Biol. 85: 228–241

    Google Scholar 

  • McMahan UJ, Sanes JR and Marshall LM (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271: 172–174

    Article  PubMed  CAS  Google Scholar 

  • Matus A, Ackerman M, Pehling G, Byers HR and Fusinava K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities.Proc. Natl. Acad. Sci. USA 79: 7590–7594

    Article  PubMed  CAS  Google Scholar 

  • Miledi R and Uchitel OD (1981) Properties of postsynaptic channels induced by acetylcholine in different frog muscle fibres. Nature 291: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Milhaud M and Pappas GD (1966) Post-synaptic bodies in the habenula and interpeduncular nuclei of the cat. J. Cell Biol. 30: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL and Proske U (1984) Vertebrate slow muscle: its structure,pattern of innervation,and mechanical properties. Physiol. Rev. 64: 103–169

    PubMed  CAS  Google Scholar 

  • Neubig RR, Krodel EK, Boyd and Cohen JB (1979) Acetylcholine and local anesthetic binding to Torpedo nicotinic post-synaptic membranes after removal of non-receptor peptides. Proc.Natl.Acad.Sci.USA 76: 690–694

    Google Scholar 

  • Nghiem H-O, Cartaud J, Dubreuil C, Kordeli C, Buttin G and Changeux J-P (1983) Production and characterization of a monoclonal antibody directed against the 43,000-dalton y 1 polypeptide from Torpedo marmorata electric organ. Proc.Natl.Acad.Sci.USA 80: 6403–6407

    Article  PubMed  CAS  Google Scholar 

  • Page SG (1965)A comparison of the fine structures of frog slow and twitch muscle fibres. J.Cell Biol. 26:477–497

    Google Scholar 

  • Palay SL and Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Palay SL, Sotelo C, Peters A and Orkand PM (1968) The axon hillock and the initial segment. J. Cell Biol. 38: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL and Webster H de F (1976) The fine structure of the nervous system. The neurons and supporting cells.Saunders,Philadelphia,London, Toronto

    Google Scholar 

  • Peters A, Proskauer CC and Kaiserman-Abramof IR (1968) The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J.Cell Biol. 39: 604–619

    Article  PubMed  CAS  Google Scholar 

  • Peper K, Dreyer F, Sandri C, Akert K and Moor H (1974) Structure and ultrastructure of the frog motor endplate. A freeze-etching study. Cell Tiss.Res. 149: 437–455

    Google Scholar 

  • Pumplin DW, Reese TS and Llinas R (1981) Are the presynaptic membrane particles the calcium channels ? Proc. Natl. Acad. Sci. USA 78: 7210–7213

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL (1987) Biogenesis and regulation of acetylcholinesterase. In: Salpeter MM (ed).The vertebrate neuromuscular junction.Alan R LisslTew York: 247–284

    Google Scholar 

  • Rousselet A, Cartaud J, Devaux PF and Changeux J-P(1982) The rotational diffusion of the acetylcholine receptor in Torpedo marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43,000 protein(s). EMBO J. 10: 439–445

    Google Scholar 

  • Rousselet A and Devaux PF (1977) Saturation transfer electron paramagnetic resonance on membrane-bound proteins. II. Absence of rotational diffusion of the Cholinergic receptor protein in Torpedo marmorata membrane fragments. Biochem. Biophys. Res. Comm. 78:448.

    Google Scholar 

  • St.John PA, Froehner SC, Goodenough DA and Cohen JB (1982) Nicotinic postsynaptic membranes from Torpedo:sideness,permeability to macromolecules,and topography of major polypeptides. J. Cell Biol. 92: 333–342

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Wennogle LP and Changeux J-P (1979) Factors regulating the susceptibility of the acetylcholine receptor protein to heat inactivation. FEBS Lett. 108: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Salpeter MM (1987) Vertebrate neuromuscular junctions: general morphology, molecular organization, and functional consequences. In.- Salpeter MM (ed). The vertebrate neuromuscular junction. Alan R Liss, New york: 1–54

    Google Scholar 

  • Salpeter MM, McHenry FA and Feng H (1974) Myoneural junctions in the extraocular muscles of the mouse. Anat. Rec. 179: 201–224

    Google Scholar 

  • Sealock R (1980) Identification of regions of high acetylcholine receptor density in tannic acid-fixed postsynaptic membranes from electric tissue. Brain Res. 199: 267–281

    Article  PubMed  CAS  Google Scholar 

  • Sealock R (1982) Cytoplasmic surface structure in postsynaptic membrane from electric tissue visualized by tannic-acid-mediated negative contrasting. J.Cell Biol. 92: 514–522

    Article  PubMed  CAS  Google Scholar 

  • Sealock R and Kavookjian A (1980) Postsynaptic distribution of acetylcholine receptors in electroplax of the torpedine ray, Narcine brasi1iensis.Brain Res. 190: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Sealock R, Wray BE and Froehner SC (1984) Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies. J.Cell Biol. 98: 2239–2244

    Article  PubMed  CAS  Google Scholar 

  • Smith RS and Ovalle WK (1973) Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles. J.Anat. 116: 1–24

    PubMed  CAS  Google Scholar 

  • Sobel A, Heidmann T, Hofler J and Changeux J-P (1978) Distinct protein components of Torpedo membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin. Proc.Natl.Acad. Sci.USA 75: 510–514

    Google Scholar 

  • Špaček J (1985a) Three dimensional analysis of dendritic spines. II.Spine apparatus and other cytoplasmic components. Anat. Embryol. 171: 235–243

    Article  PubMed  Google Scholar 

  • Špaček J (1985b) Relationship between synaptic junctions,puncta adhaerentia and the spine apparatus at neocortical axo-spinous synapses. A serial section study. Anat.Embryol. 173: 129–135

    Article  PubMed  Google Scholar 

  • Špaček J (1986) Similarities between organization of subsynaptic cytoplasm at frog neuromuscular and mammalian axospinous junctions. In: Proceedings of the Ilnd Czechoslovak-East German bilateral symposia of anatomists, histologists and embryologists.Bratislava, p.88

    Google Scholar 

  • Špaček J and Hartmann M (1983) Three-dimensiohal analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices. Anat.Embryol. 167: 289–310

    Article  PubMed  Google Scholar 

  • Špaček J and Lieberman AR (1974) Three-dimensional reconstruction in electron microscopy of central nervous system. Sbornik V£d Praci Hradec Kralove. 17: 203–222

    Google Scholar 

  • Taxi J (1961) Etude de 1’ultrastructure des zones synaptiques dans les ganglions sympathiques de la Grenouille. C.R.Acad.Sci.(Paris) 252: 174–176

    CAS  Google Scholar 

  • Taxi J (1965) Contribution a l’etude des connexions des neurones moteurs du systeme nerveux autonome. Ann. Sci. natureels, Zool.,12e s. 7: 413–674

    Google Scholar 

  • Tarrant SB and Routtenberg A (1977) The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus.Tiss. Cell 9: 461–473

    Article  CAS  Google Scholar 

  • Tarrant SB and Routtenberg A (1979) Postsynaptic membrane and spine apparatus: proximity in dendritic spines. Neurosci.Lett. 11: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Uchitel OD and Miledi R (1987) Characteristics of synaptic currents in frog muscle fibers of different types. J.Neurosci.Res. 17: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Verma V (1984a) The presynaptic active zones in three different types of fibres in frog muscle. Proc.R.Soc.Lond. B221. 369–373

    Article  PubMed  CAS  Google Scholar 

  • Verma V (1984b) Innervation and membrane specializations at neuromuscular junctions in submaxillaris muscle of the frog. J.Ultrastruct.Res. 87: 136–148

    Article  PubMed  CAS  Google Scholar 

  • Verma V and Reese TS (1984) Structure and distribution of neuromuscular junctions on slow muscle fibers in the frog. Neuroscience 12: 647–662

    Article  PubMed  CAS  Google Scholar 

  • Walrond JP and Reese TS (1985) Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. J. Neuroscience 5: 1118–1131

    CAS  Google Scholar 

  • Wennogle LP and Changeux J-P 1980 ) Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo studied by selective proteolysis. Eur. J. Biochem. 106: 381–393

    Article  PubMed  CAS  Google Scholar 

  • Westrum, LE (1970) Observations on initial segments of axons in the prepyri-form cortex of the rat. J. Comp. Neurol. 139: 337-356

    Google Scholar 

  • Westrum LE, Jones DH, Gray EG and Barron J (1980) Microtubules, dendritic spines and spine apparatus. Cell Tissue Res. 208: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP and Gray EG (1962) The synapse: biology and morphology. Brit. ed. Bull. 18:223–228

    Google Scholar 

  • Woodruff ML, Theriot J and Burden SJ (1987) 300-kD subsynaptic protein copurifies with acetylcholine receptor-rich membranes and is concentrated at neuromuscular synapses. J.Cell Biol. 104: 939–946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couteaux, R., Špaček, J. (1988). Specializations of Subsynaptic Cytoplasms. Comparison of Axospinous Synapses and Neuromuscular Junctions. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics