Skip to main content

Calcium Channels and Na+/Ca2+ Exchange in Synaptosomes

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

Synaptosomes, the subcellular fraction of brain homogenates rich in presynaptic nerve terminals (Gray and Whittaker 1962; De Robertis 1962; Whittaker et al 1964; Whittaker 1965; Bradford 1969), possess the principal functional features of intact neurons: maintenance of membrane potential (Bradford 1971; Blaustein and Goldring 1975; Coutinho et al 1984), neurotransmitter uptake and release (Blaustein 1975; Raiteri and Levi 1978), depolarization dependent Ca2+ entry (Nachshen and Blaustein 1980; Blaustein 1975) and Na+/Ca2+ exchange (Blaustein 1974; Blaustein and Osborn 1975; Blaustein and Ector 1976; Carvalho 1982; Coutinho et al 1983, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albus U, Habermann E, Ferry DR and Glossmann H (1984) Novel 1,4-dihydropyridine (Bay K 8644) facilitates calcium dependent [3H] noradrenaline release from PC 12 cells. J Neurochem 42: 1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1984) Nitrendipine block of cardiac calcium channels: high affinity binding to the inactivated state. Proc Natl Acad Sci 81: 6388–6392

    Article  PubMed  CAS  Google Scholar 

  • Bellemann P, Ferry DR, Lübbecke F and Clossmann H (1981) [3H]Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneim Forch/Drug Res 31: 2064–2067

    Google Scholar 

  • Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physil Biochem Pharmacol 70: 33–82

    Article  CAS  Google Scholar 

  • Blaustein MP (1975) Effect of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol (Lond) 247: 617–655

    CAS  Google Scholar 

  • Blaustein MP and Ector AC (1976) Carrier-mediated sodium-dependent and calcium- dependent calcium efflux from pinched-off nerve terminals (synaptosomes) in vitro. Biochim Biophys Acta 419: 295–308

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP and Goldring JM (1975) Membrane potentials in pinched-off nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium difusion potentials. J Physiol 247: 589–615

    PubMed  CAS  Google Scholar 

  • Blaustein MP and King AC (1976) Influence of membrane potential on sodium-dependent uptake of GABA by pre-synaptic nerve terminals. J. Memb Biol 30: 153–173

    Article  CAS  Google Scholar 

  • Blaustein MP and Oborn CJ (1975) The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. J Physiol (Lond) 247: 657–686

    CAS  Google Scholar 

  • Bradford HF (1975) Isolated nerve terminals as an in vitro preparation for the study of dynamic aspects of transmitter metabolism and release. In: Iversen SD and Snyder SH (eds) Handbook of Psycopharmacology, Vol 1. Plenum Press, New York, p 191

    Google Scholar 

  • Bradford HF (1969) Respiration in yjtrp. of synaptosomes from mammalian cerebral cortex. J Neurochem 16: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Bradford HF (1971) Membrane potential and metabolic performance in mammalian synaptosomes. In: Benson PF (ed), Cellular Organelles and Membranes in Mental Retardation, Churchill-Livingstone, London

    Google Scholar 

  • Carvalho AP (1982) Calcium in the nerve cell. In: Lajtha A (ed) Handbook of Neurochemistry, Vol 1. Plenum Press, New York, p 69

    Google Scholar 

  • Carvalho CAM and Carvalho AP (1979) Effect of temperature and ionophores on the permeability of synaptosomes. J Neurochem 33: 309–317

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CAM and Carvalho AP (1984) Identification of calcium channels with radiolabeled calcium blockers. In: Burton RM and Guerra FC (eds) Biomembranes. Dynamics and Biology, Plenum Press, New York, p 317

    Google Scholar 

  • Carvalho AP, Coutinho OP, Madeira VMC and Carvalho CAM (1984) Calcium transport in synaptosomes and synaptic plasma membrane vesicles. In: Burton RM and Guerra FC (eds) Biomembranes. Dynamics and Biology, Plenum Press, New York, p291

    Google Scholar 

  • Carvalho CAM, Coutinho OP and Carvalho AP (1986 a) Effect of Ca2+ channel blockers on translocation across synaptosomal membranes. J Neurochem 47: 1774–1784

    Google Scholar 

  • Carvalho CAM, Santos SV and Carvalho AP (1986 b) v-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers. Eur J Pharmacol 131: 1–12

    Google Scholar 

  • Chin JH (1986) Differential sensivity of calcium channels to dihydropyridines. The modulated receptor hypotesis. Biochem Pharmacol 35: 4115–4120

    Article  PubMed  CAS  Google Scholar 

  • Coutinho OP, Carvalho AP and Carvalho CAM (1983) Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic membranes. J Neurochem 41: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Coutinho OP, Carvalho CAM and Carvalho AP (1984) Calcium uptake related to K+-depoIarization and Na+/Ca2+ exchange in sheep brain synaptosomes. Brain Res 290: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Creba JA and Karobath M (1986) The effect of dihydropyridine calcium agonists and antagonist on neuronal voltage-sensitive calcium channels. Biochem Biophys Res Commun 134: 1038–1047

    Article  PubMed  CAS  Google Scholar 

  • Crompton M, Heid I and Carafoli E (1980) The activation by potassium of the sodium-calcium carrier of cardiac mitochondria. FEBS Lett 115: 257–259

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JO and Neal M J (1981) On the mechanism by which veratridine causes a calcium-independent release of y-aminobutyric acid from brain slices. Brit J Pharmacol 73: 655–667

    CAS  Google Scholar 

  • Daniell LC, Barr EM and Leslie SW (1983) 5Ca2+ Uptake into Rat whole brain synaptosomes unaltered by dihydropyridine calcium antagonists. J Neurochem 41: 1455–1459

    Google Scholar 

  • De Belleroche JS and Bradford H F (1977) On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro. J Neurochem 29: 335–343

    Article  PubMed  Google Scholar 

  • De Robertis E, Pellegrino De Iraldi A, Rodriguez de Lores Arnaiz C and Salganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain. J Neurochem 9: 23–25

    Google Scholar 

  • Drapeau P and Blaustein MP (1983) Initial release of [3H]dopamine from rat striatal synaptosomes: correlation with calcium entry. J Neurosci 3: 703–713

    PubMed  CAS  Google Scholar 

  • Erdreich A and Rahamimoff H (1984) The inhibition of Ca uptake in cardiac membrane vesicles by verapamil. Biochem Pharmacol 33: 2315–2323

    Article  PubMed  CAS  Google Scholar 

  • Erdreich A, Spanier R and Rahamimoff H (1983) The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles. Eur J Pharamcol 90: 193–202

    Article  CAS  Google Scholar 

  • Freedman SB, Dawson G, Villereal ML and Miller RJ (1984) Identification and characterization of voltage sensitive calcium channels in neuronal cell lines. J Neurose 4: 1453–1467

    CAS  Google Scholar 

  • Freedman SB and Miller RJ (1984) Calcium channel activation: a different type of drug action. Proc Natl Acad Sci USA 81: 5580–5583

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler BH and Brown DA (1987) Effects of dihydropyridines on calcium currents in CA3 pyramidal cells in slice cultures of rat hippocampus. Neuroscience 20: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Glossmann H, Ferry DR, Lübbecke F., Mewes R and Hoffmann F (1982) Calcium channels: direct identification with radioligand binding studies. Trends Pharmacol Sci 3: 431–437

    Article  CAS  Google Scholar 

  • Gray EG and Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of the cell fragments derived by homogeneization and centrifugation. J Anat 96: 79–88

    PubMed  CAS  Google Scholar 

  • Green F J, Farmer BB, Wiseman GL, Jose MJL and Watanabe AM (1985) Effect of membrane depolarization on binding of ∣3H Nitrendipine to rat cardiac myocytes. Circ Res 56: 576–585

    PubMed  CAS  Google Scholar 

  • Greenberg DA, Carpenter CL and Messing RO (1986) Depolarization-dependent binding of the calcium channel antagonist, (+)-∣3H∣PN 200–110, to intact cultured PC 12 cells. J Pharmacol Expl Ther 238: 1021–1027

    CAS  Google Scholar 

  • Gredal O, Drejer J and Honoré T (1987) Different target sizes of the voltage-dependent Ca2+ channel and the ∣3HNitrendipine binding site in brain. Eur J Pharmacol 136: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Hajös F (1975) An improved method for the preparation of synaptosomal fraction in high purity. Brain Res 93: 485–489

    Article  PubMed  Google Scholar 

  • Hess P, Lansman JB and Tsien RW (1984) Different modes of calcium channel gating by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Kass RS, Sanguinetti MC, Bennet PB, Coplin BE and Kräfte DS (1984) Voltage-dependent modulation of cardiac calcium channels by dihydropyridines. In: Fleckenstein A, Van Breemen C, Gross R and Hoffmeister F (eds) Cardiovascular Effects of Dihydropyridines Type Calcium Antagonists and Agonists, Springer-Verlag, New York, p198

    Google Scholar 

  • Iversen LL and Kelly JS (1975) Uptake and metabolism of y-aminobutyric acid by neurons and glial cell. Biochem Pharmacol 24: 933–938

    Article  PubMed  CAS  Google Scholar 

  • Lee KS and Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D 600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302: 790–794

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Rusca G and Raiteri M (1976) Diaminobutyric acid: a tool for discriminating between carrier-mediated and non-carrier-mediated release of GABA from synaptosomes? Neurochem Res 1: 581–598

    Article  Google Scholar 

  • Martin DL (1973) Kinetics of the sodium dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem 21: 341–356

    Article  Google Scholar 

  • Midlemiss DN and Spedding M (1985) A functional correlate for the dihydropyridine binding site in rat brain. Nature 314: 94–96

    Article  Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Miller R and Freedman SB (1984) Are dihydropyridine binding sites voltage sensitive calcium channels? Life Sci 34: 1205–1221

    Article  PubMed  CAS  Google Scholar 

  • Mullins LJ, Requena J and Whittembury J (1985) Ca2+ entry in squid axons during voltage-clamp pulses is mainly Na+/Ca2+ exchange. Proc Natl Acad Sci USA 82: 1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Murphy KMM and Snyder SH (1982) Calcium antagonist receptor binding sites labeled with pH [-nitrendipine. Eur J Pharmacol 77: 201–202

    Article  PubMed  CAS  Google Scholar 

  • Nachshen DA (1985) The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals isolated from rat brain. J Physiol 361: 251–268

    PubMed  CAS  Google Scholar 

  • Nachshen DA and Balustein MP (1979) The effects of some calcium antagonists on calcium influx in presynaptic nerve terminals. Mol Pharmacol 16: 579–586

    CAS  Google Scholar 

  • Nachshen DA and Blaustein MP (1980) Some properties of potassium stimulated calcium influx in presynaptic nerve ending. J Gen Physiol 76: 709–728

    Article  PubMed  CAS  Google Scholar 

  • Noris PJ, Dhaliwal DK, Druce DP and Bradford HF (1983) The supression of stimulus-evoked release of aminoacid neurotransmitters from synaptosomes by verapamil. J Neurochem 40: 514–521

    Article  Google Scholar 

  • Porzig H and Becker C (1985) Binding of dihydropyridine Ca-channel ligands to living cardiac cells at different membrane potentials. Naunyn-Schmiedeberg’s Arch Pharmacol 329: R47

    Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, Carmine R, Ribera MT and Levi G (1978) Studies on dopamine uptake and release in synaptosomes. In: Roberts PJ et al (eds) Advances in Biochemical Psycopharmacology, Vol. 19. Raven Press, New York, p35

    Google Scholar 

  • Raiteri M and Levi G (1978) Release mechanisms for catecholamines and serotonin in synaptosomes. In: Ehrenpreis S and Kopin IJ (eds) Reviews in Neuroscience, Vol. 3. Raven Press, New York, p77

    Google Scholar 

  • Rampe D, Janis RA and Triggle DJ (1984) BAY K8644, a 1,4-dihydropyridine Ca2+ channel activator: dissociation of binding and functional effects in brain synaptosomes. J Neurochem 43: 1688–1692

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574

    Article  PubMed  CAS  Google Scholar 

  • Santos MS and Carvalho AP (1982) A simple superfusion technique for studying neurotransmitter release. Effect of monovalent ions on ∣3H∣GABA release from synaptosomes. Cienc Biol (Portugal) 7: 95–113

    CAS  Google Scholar 

  • Santos MS, Gongalves PP and Carvalho AP (1987) Compartmentation and release of exogenous GABA in sheep brain synaptosomes. Neurochem Res 12: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Schilling WP and Drewer JA (1986) Effect of membrane potential on ∣3H[nitrendipine (NIT) binding determined in an isolated cardiac sarcolemma preparation. Biophys J 49: abst.)

    Google Scholar 

  • Sihra TS, Scott IG and Nicholss DG (1984) lonophore A23187, verapamil, protonionophores, and veratridine influence the release of y-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium. J Neurochem 43: 1624–1630

    Google Scholar 

  • Shwartz LM, McCleskey EW and Aimers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314: 747–751

    Article  Google Scholar 

  • Suskiw JB, O’Leary ME, Murawsky MM and Wang T (1986) Presynaptic Calcium channels in rat cortical synaptosomes: fast kinetics of phasis calcium influx, channel inactivation and relationship to nitrendipine receptors. J Neurosci 6: 1349–1357

    Google Scholar 

  • Takahashi M and Ogura A (1983) Dihydropyridines are potent calcium channel blockers in neuronal cells. FEBS Lett 152: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Thayer SA, Murphy SN and Miller RJ (1986) Widespread distribution of dihydropyridines sensitive calcium channels in central nervous system. Mol Pharmacol 30: 505–509

    PubMed  CAS  Google Scholar 

  • Toll L (1982) Calcium antagonists. High affinity binding and inhibition of calcium transport in a clonal cell line. J Biol Chem 257: 13189–13192

    PubMed  CAS  Google Scholar 

  • Turner TY and Goldin SM (1985) Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. J. Neurosc 5: 842–849

    Google Scholar 

  • White EJ and Bradford HF (1986) Enhancement of depolarization-induced synaptosomal Ca2+ uptake and neurotransmitter release by BAY K8644. Biochem Pharmacol 35: 2193–2197

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1965) The application of subcellular fractionation techniques to the study of brain function. Progr Biophys Mol Biol 15: 39–96

    Article  CAS  Google Scholar 

  • Whittaker VP, Michaelson IA and Kirland RJA (1964) The separation of synaptic vesicles from nerve ending particles (“synaptosomes”). Biochem J 90: 293–303

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carvalho, A.P., Santos, M.S., Henriques, A.O., Tavares, P., Carvalho, C.M. (1988). Calcium Channels and Na+/Ca2+ Exchange in Synaptosomes. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics