Skip to main content
Log in

Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: Experimental observations and theoretical considerations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Sodium, potassium and veratridine were tested for their effects on the uptake of gamma-aminobutyric acid (GABA) by pinched-off presynaptic nerve terminals (synaptosomes). As noted by previous investigators, the uptake from media containing 1 μm GABA (“high-affinity” uptake) is markedly Na-dependent; the uptake averaged 65 pmoles/mg synaptosome protein × min, with [Na]0=145mm and [K]0=5mm, and declined by about 90% when the external Na concentration ([Na]0) was reduced to 13mm (Na replaced by Li). The relationship between [Na]0 and GABA uptake was sigmoid, suggesting that two or more Na+ ions may be required to activate the uptake of one GABA molecule. Thermodynamic considerations indicate that with a Na+/GABA stoichiometry of 2∶1, the Na electrochemical gradient, alone, could provide sufficient energy to maintain a maximum steady-state GABA gradient ([GABA] i /[GABA]0) of about 104 across the plasma membrane of GABA-nergic terminals.

In Ca-free media with constant [Na]0, GABA uptake was inhibited, without delay, by increasing [K]0 or by introducing 75 μm veratridine; the effect of veratridine was blocked by 200nm tetrodotoxin. The rapid onset (within 10 sec) of the veratridine and elevated-K effects implies that alterations in intra-terminal ion concentrations are not responsible for the inhibition. The uptake of GABA was inversely proportional to log [K]0. These observations are consistent with the idea that the inhibitory effects of both veratridine and elevated [K]0 may be a consequence of their depolarizing action. The data are discussed in terms of a barrier model (Hall, J. E., Mead, C.A., Szabo, G. 1973.J. Membrane Biol. 11:75) which relates carrier-mediated ionic flux to membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, P.F., Blaustein, M.P., Keynes, R.D., Manil, J., Shaw, T.I., Steinhardt, R. 1969. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.J. Physiol. (London) 200:459

    Google Scholar 

  • Balcar, V.J., Johnston, G.A.R. 1975. High affinity uptake ofl-glutamine in rat brain slices.J. Neurochem. 24:875

    Google Scholar 

  • Beck, J.C., Sacktor, B. 1975. Energetics of the Na+-dependent transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 250:8674

    Google Scholar 

  • Bennett, J.P., Jr., Mulder, A.H., Snyder, S.H. 1974. Neurochemical correlates of synaptically active amino acids.Life Sci. 15:1045

    Google Scholar 

  • Blaustein, M.P. 1974. The interrelationship between sodium ions and calcium fluxes across cell membranes.Rev. Physiol. Biochem. Pharmacol. 70:33

    Google Scholar 

  • Blaustein, M.P. 1975. Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminalsin vitro.J. Physiol. (London) 247:617

    Google Scholar 

  • Blaustein, M.P., Ector, A.C. 1975. Barbiturate inhibition of calcium uptake by depolarized nerve terminalsin vitro.Molec. Pharmacol. 11:369

    Google Scholar 

  • Blaustein, M.P., Ector, A.C. 1976. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes)in vitro.Biochim. Biophys. Acta 419:295

    Google Scholar 

  • Blaustein, M.P., Goldring, J.M. 1975. Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.J. Physiol. (London) 247:589

    Google Scholar 

  • Blaustein, M.P., Johnson, E.M., Jr., Needleman, P. 1972. Calcium-dependent norepinephrine release from presynaptic nerve endingsin vitro Proc. Nat. Acad. Sci. USA 69:2237

    Google Scholar 

  • Blaustein, M.P., Russell, J.M., De Weer, P. 1974. Calcium efflux from internally-dialyzed squid axons: the influence of external and internal cations.J. Supramolec. Struct. 2:558

    Google Scholar 

  • Blaustein M.P., Wiesmann, W.P. 1970. Potassium ions and calcium fluxes in isolated nerve terminals.In: Cholinergic Mechanisms in the CNS, E. Heilbronn and A.P. Winter, editors. p. 291. Research Institute of National Defense, Stockholm

    Google Scholar 

  • Bockris, J.O'M., Reddy, A.K.N. 1970. Modern Electrochemistry. Vol. 1. p. 387–398 and Vol. 2. p. 879–894. Plenum Press, New York

    Google Scholar 

  • Bogdanski, D.F., Tissari, A., Brodie, B.B. 1968. Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes.Life Sci. 7:419 (Part I)

    Google Scholar 

  • Bradford, H.F. 1969. Respirationin vitro of synaptosomes from mammalian cerebral cortex.J. Neurochem. 16:675

    Google Scholar 

  • Bretscher, M.S., Raff, M.C. 1975. Mammalian plasma membranes.Nature (London) 258:43

    Google Scholar 

  • Brinley, F.J., Jr., Mullins, L.J. 1974. Effects of membrane potential on sodium and potassium fluxes in squid axons.Ann. N.Y. Acad. Sci. 242:406

    Google Scholar 

  • Caldwell, P.C. 1969. Energy relationships and the active transport of ions.Curr. Top. Bioenerg. 3:251

    Google Scholar 

  • Colburn, R.W., Goodwin, F.K., Murphy, D.L., Bunney, W.E., Jr., Davis, J.M. 1968. Quantitative studies of norepinephrine uptake by synaptosomes.Biochem. Pharmacol. 17:957

    Google Scholar 

  • Colombini, M., Johnstone, R.M. 1974. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells.J. Membrane Biol. 18:315

    Google Scholar 

  • Cotman, C.W., Haycock, J.W., White, W.F. 1976. Stimulus-secretion coupling processes in brain: Analysis of noradrenaline and gamma-aminobutyric acid release.J. Physiol. (London) 254:475

    Google Scholar 

  • Curran, P.F., Schultz, S.C., Chez, R.A., Fuisz, R.E. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine.J. Gen. Physiol. 50:1261

    Google Scholar 

  • DeBelleroche, J.S., Bradford, H.F. 1972. The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence.J. Neurochem. 19:1817

    Google Scholar 

  • Eisenman, G., Krasne, S., Ciani, S. 1975. The kinetic and equilibrium components of selective ionic permeability mediated by nactin-and valinomycin-type carriers having systematically varied degrees of methylation.Ann. N.Y. Acad. Sci. 264:34

    Google Scholar 

  • Elliott, K.A.C., van Gelder, N.M. 1958. Occlusion and metabolism of γ-aminobutyric acid by brain tissue.J. Neurochem. 3:28

    Google Scholar 

  • Escueta, A.V., Appel, S.H. 1969. Biochemical studies of synaptosomesin vitro. II. Potassium transport.Biochemistry 8:725

    Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport.Biochim. Biophys. Acta 443:49

    Google Scholar 

  • Geck, P., Heinz, E., Pfeiffer, B. 1974. Evidence against direct coupling between amino acid transport and ATP hydrolysis.Biochim. Biophys. Acta 339:419

    Google Scholar 

  • Gibb, L.E., Eddy, A.A. 1972. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients.Biochem. J. 129:979

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  • Gray, E.G., Whittaker, V.P. 1962. The isolation of nerve endings from brain: An electronmicroscopic study of cell fragments derived by homogenization and centrifugation.J. Anat. 96:79

    Google Scholar 

  • Gurd, J.W., Jones, L.R., Mahler, H.R., Moore, W.J. 1974. Isolation and partial characterization of rat brain synaptic plasma membranes.J. Neurochem. 22:281

    Google Scholar 

  • Hall, J.E., Latorre, R. 1976. Nonactin-K+ complex as a probe for membrane asymmetry.Biophys. J. 16:99

    Google Scholar 

  • Hall, J.E., Mead, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75

    Google Scholar 

  • Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187

    Google Scholar 

  • Hedqvist, P., Stjärne, L. 1969. The relative role of recapture and of de novo synthesis for the maintenance of neurotransmitter homeostasis in noradrenergic nerves.Acta Physiol. Scand. 76:270

    Google Scholar 

  • Heinz, E., Geck, P. 1974. The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells-a revised assessment.Biochim. Biophys. Acta 339:426

    Google Scholar 

  • Heinz, E., Geck, P., Wilbrandt, W. 1972. Coupling in secondary active transport. Activation of transport by co-transport and/or counter-transport with the fluxes of other solutes.Biochim. Biophys. Acta 255:442

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    Google Scholar 

  • Holtz, R.W., Coyle, J.T. 1974. The effects of various salts, temperature, and the alkaloids veratridine and batrachotoxin on the uptake of [3H] dopamine into synaptosomes from rat striatum.Molec. Pharmacol. 10:746

    Google Scholar 

  • Iversen, L.L. 1971. Role of transmitter uptake mechanisms in synaptic transmission.Br. J. Pharmacol. 41:571

    Google Scholar 

  • Iversen, L.L. 1973. Catecholamine uptake processes.Br. Med. Bull. 29:130

    Google Scholar 

  • Iversen, L.L., Kravitz, E.A. 1968. The metabolism of γ-aminobutyric acid (GABA) in the lobster nervous system-uptake of GABA in nerve-muscle preparations.J. Neurochem. 15:609

    Google Scholar 

  • Iversen, L.L., Neal, M.J. 1968. The uptake of [3H] GABA by slices of rat cerebral cortex.J. Neurochem. 15:1141

    Google Scholar 

  • Johnstone, R.M. 1975. Reversed transport of amino acids in Ehrlich cells.Biochim. Biophys. Acta 413:252

    Google Scholar 

  • Krnjević, K., Schwartz, S. 1967. Some properties of unresponsive cells in the cerebral cortex.Exp. Brain Res. 3:306

    Google Scholar 

  • Kuhar, J.M. 1973. Neurotransmitter uptake: A tool in identifying transmitter-specific pathways.Life Sci. 13:1623

    Google Scholar 

  • Laidler, K.J., Tweedale, A. 1971. The current status of Eyring's rate theory.In: Chemical Dynamics, Papers in Honor of Henry Eyring. J. O. Hirschfelder and D. Henderson, editors.Adv. Chem. Phys. 21:113

    Google Scholar 

  • Levi, G. 1972. Transport systems for GABA and for other amino acids in incubated chick brain tissue during development.Arch. Biochem. Biophys. 151:8

    Google Scholar 

  • Levi, G., Raiteri, M. 1973. GABA and glutamate uptake by subcellular fractions enriched in synaptosomes: critical evaluation of some δ methodological aspects.Brain Res. 57:165

    Google Scholar 

  • Levy, W.B., Haycock, J.W., Cotman, C.W. 1974. Effects of polyvalent cations on stimuluscoupled secretion of [14C]-λ-aminobutryic acid from isolated brain synaptosomes.Molec. Pharmacol. 10:438

    Google Scholar 

  • Ling, C.M., Abdel-Latif, A.A. 1968. Studies on sodium transport in brain nerve-ending particles.J. Neurochem. 15:721

    Google Scholar 

  • Lowry, O.M., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    Google Scholar 

  • Marchbanks, R.M. 1968. The uptake of [14C] choline into synaptosomesin vitro.Biochem. J. 110:533

    Google Scholar 

  • Martin, D.L. 1973. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes.J. Neurochem. 21:345

    Google Scholar 

  • Martin, D.L. 1976. Carrier-mediated transport and removal of GABA from synaptic regions.In: GABA in Nervous System Function. E. Roberts. T.N. Chase and D.B. Tower, editors. p. 347. Raven Press, New York

    Google Scholar 

  • Martin, D.L., Smith, A.A. III. 1972. Ions and the transport of gamma-aminobutyric acid by synaptosomes.J. Neurochem. 19:841

    Google Scholar 

  • Mitchell, P. 1970. Reversible coupling between transport and chemical reactions.In: Membranes and Ion Transport. Vol. 1, p. 192. E.E. Bittar, editor. Wiley-Interscience, London

    Google Scholar 

  • Mulder, A.H., Yamamura, H.I., Kuhar, M.J., Snyder, S.H. 1974. Release of acetylcholine from hippocampal slices by potassium depolarization: Dependence on high affinity choline uptake.Brain Res. 70:372

    Google Scholar 

  • Mullins, L.J., Brinley, F.J., Jr. 1975. Sensitivity of calcium efflux from squid axons to changes in membrane potential.J. Gen. Physiol. 65:135

    Google Scholar 

  • Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Nat. Acad. Sci. USA 71:484

    Google Scholar 

  • Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized nernst-Planck equation.Biophys. J. 9:1160

    Google Scholar 

  • Ohta, M., Narahashi, T., Keeler, R.F. 1973. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons.J. Pharmacol. Exp. Ther. 184: 143

    Google Scholar 

  • Potter, L.T., Glover, V.A.S., Saelens, J.K. 1968. Choline acetyltransferase from rat brain.J. Biol. Chem. 243:3864

    Google Scholar 

  • Redburn, D.A., Shelton, D., Cotman, C.W. 1976. Calcium-dependent release of exogenously loaded γ-amino-[U-14C] butyrate from synaptosomes: Time course of stimulation by potassium, veratridine and the calcium ionophore, A23187.J. Neurochem. 26:297

    Google Scholar 

  • Reid, M., Gibb, L.E., Eddy, A.A. 1974. Ionophore-mediated coupling between ion fluxes and amino acid abosrption in mouse ascites-tumour cells.Biochem. J. 140:383

    Google Scholar 

  • Rose, R.C., Schultz, S.G. 1970. Alanine and glucose effects on the intracellular electrical potential of rabbit ileum.Biochim. Biophys. Acta 211:376

    Google Scholar 

  • Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol. 57:639

    Google Scholar 

  • Rothstein, A., Cabantchik, Z.I., Knauf, P. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins.Fed. Proc. 35:3

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    Google Scholar 

  • Schultz, S.G., Curran, P.F., Chez, R.A., Fuisz, R.E. 1967. Alanine and sodium fluxes across mucosal border of rabbit ileum.J. Gen. Physiol. 50:1241

    Google Scholar 

  • Simon, J.R., Martin, D.L., Kroll, M. 1974. Sodium-dependent efflux and exchange of GABA in synaptosomes.J. Neurochem. 23:981

    Google Scholar 

  • White, J.F., Armstrong, W.McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Am. J. Physiol. 221:194

    Google Scholar 

  • White, T.D., Keen, P. 1970. The role of internal and external Na+ and K+ on the uptake of3H-norepinephrine by synaptosomes prepared from rat brain.Biochim. Biophys. Acta 196:285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaustein, M.P., King, A.C. Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: Experimental observations and theoretical considerations. J. Membrain Biol. 30, 153–173 (1976). https://doi.org/10.1007/BF01869665

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869665

Keywords

Navigation