Skip to main content

Future Trends in Plant Cell Biotechnology

  • Chapter
Plant Cell Biotechnology

Part of the book series: NATO ASI Series ((ASIH,volume 18))

  • 495 Accesses

Abstract

The plant tissue culture (ptc) technique has grown spectacularly since the 1930’s when it was demonstrated that aseptic plant organs and explants could be subcultured (Gautheret 1983). A dramatic example of this growth is the large number of ptc research articles published in 1985, 4,200, which is seven times greater than that published in 1965 (Bhojwani et al 1986). Another even more significant growth indicator is the attendance of more than 1,500 scientists at the 1986 International Association of Plant Tissue Culture (IAPTC). The number attending exceeded by approximately one-third that attending the 1982 IAPTC meeting. It does appear that the ptc technique has evolved from an art to that of a science with principles that assure reasonable experimental reproducibility. However, the question of ptc as an art or a science is irrelevant as it has dramatically affected the practice of the plant sciences in academia, the government, and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1984) Commercial Biotechnology: An International Analysis, Office of Technology Assessment, OTA-BA-218, Washington DC, p 3

    Google Scholar 

  • Anonymous (1986) Improved micropropagation systems. Agricell Report 7(1): p 5

    Google Scholar 

  • Anonymous (1987) Genetic Engineering News. University of California scientists investigate rubber production. January, p 41

    Google Scholar 

  • Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: Sources of industrial and medicinal materials. Science 228: 1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Banthorpe DV, Branch SA, Njar VCO, Osborne MG, Watson DG (1986) Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochemistry 25: 629–636

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dhawan V, Cocking EC (1986) Plant Tissue Culture: A Classified Bibliography, Elsevier, New York

    Google Scholar 

  • Butts ER (1987) A review of biotech regulations involving plants and microorganisms. Genetic Engineering News, February, p 24

    Google Scholar 

  • Cocking EC (1985) Protoplasts from root hairs of crop plants. Bio/Technology 3: 1104–1106

    Article  Google Scholar 

  • Cocking EC (1986) Plant cell biology in the 21st century: The needs of plant cell and tissue culture. In: Somers DA, Gengenbach BG, Biesboer DD, Hackett WP, Green CE (eds) VI International Congress of Plant and Tissue and Cell Culture — Abstracts. University of Minnesota, Minneapolis p 2

    Google Scholar 

  • Collin HA, Watts M (1985) Flavor production in culture. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of Plant Cell Culture — Vol I. Macmillan Pub Co, New York, p 729–747

    Google Scholar 

  • Cooks RG, Kondrat RW, Youssefi M, McLaughlin JL (1981) Mass-analyzed ion inetic energy (MIKE) spectrometry and the direct analysis of coca. J Ethnopharmacology 3: 299–312

    Article  CAS  Google Scholar 

  • Crossway A, Hauptli H, Houck CM, Irvine JM, Oakes JV, Perani LA (1986) Micromanipulation techniques in plant biotechnology. BioTechniques 4(4): 320–334

    Google Scholar 

  • Crossway A, Houck CM (1985) A microassay for detection of DNA and RNA in small numbers of plant cells. Plant Molecular Biology 5: 183–190

    Article  CAS  Google Scholar 

  • De Bry L (1986) Robots in plant tissue culture: An insight. International Association Plant Tissue Culture Newsletter 49: 2–22

    Google Scholar 

  • Dibner MD (1986) Biotechnology in Europe. Science 232: 1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Dickson S (1985) Twyford uses tissue culture methods for breeding plants. Genetic Engineering News, October, p 17

    Google Scholar 

  • DiCosmo F, Misawa M (1985) Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology 3(12): 318–322

    Article  CAS  Google Scholar 

  • Edwards GE, Scott R (1985) Photorespiratory metabolism in protoplasts. In: Pilet P-E (ed) op cit, p 267–276

    Chapter  Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221: 949–951

    Article  PubMed  CAS  Google Scholar 

  • Ferrigni NR, Putnam JE, Anderson B, Jacobsen LB, Nichols DE, Moore DS, McLaughlin JL, Powell RG, Smith CR Jr. (1982) Modification and evaluation of the potato disc assay and antitumor screening of Euphorbiaceae seeds. J Nat Prod 45(6): 679–686

    Article  PubMed  CAS  Google Scholar 

  • Flick CE, Kut SA, Bravo JE, Gleba YY, Evans DA (1985) Segregation of organelle traits following protoplast fusion in Nicotiana. Bio/Technology 3: 555–560

    Article  CAS  Google Scholar 

  • Flores HE, Hoy MW, Pickard JJ (1986) Production of secondary metabolites by normal and transformed root cultures. In: Somers DA, Gengenbach BG, Biesboer DD, Hackett WP, Green CE (eds) op cit, University of Minnesota, Minneapolis, p 117

    Google Scholar 

  • Fowler MW (1985) Plant cell culture — future perspectives. In: Neumann K-H, Barz W, Reinhard E (eds) Primary and Secondary Metabolism of Plant Cell Cultures. Springer-Verlag, New York, p 362

    Chapter  Google Scholar 

  • Fujita Y, Tabata M (1986) Secondary metabolites from plant cells: Pharmaceutical application and progress in commercial production. In: Somers DA, Gengenbach BG, Biesboer DD, Hackett WP, Green CE (eds) op cit, University of Minnesota, Minneapolis, p 2

    Google Scholar 

  • Galston AW, Smith TA (eds) (1985) Polyamines in Plants, Nijhoff/Junk, Dordrecht. Reprint of Plant Growth Regulation 3: 1–422

    Google Scholar 

  • Gautheret RJ (1983) Plant tissue culture: A history. Bot Mag Tokyo 96: 393–410

    Article  Google Scholar 

  • Gebhart F (1986) Genetic Engineering News, October 10, p 10

    Google Scholar 

  • Iversen TH (1985) Protoplasts and gravireactivity. In: Pilet P-E (ed) op cit, p 236–249

    Chapter  Google Scholar 

  • Klausner A (1985) Researchers cotton to new fiber findings. Bio/Technology 3: 1049–1051

    Article  Google Scholar 

  • Kothari SL, Monte DC, Widholm JM (1986) Selection of Daucus carotasomatic hybrids using drug resistance markers and characterization of their mitochondrial genomes. Theor Appl Genet 72: 494–502

    Article  CAS  Google Scholar 

  • Kreis W, Reinhard E (1986) Highly efficient 12B-hydroxylation of digitoxin in Digitalis lanatacell suspensions using a two-staged culture method. The Society for Medicinal Plant Research, 34 Congr, University Hamburg, September, p 4–5

    Google Scholar 

  • Kurz WGW, Chatson KB, Constabel F (1985) Biosynthesis and accumulation of indole alkaloids in cell suspension cultures of Catharanthus roseuscultavars. In: Neumann K-H, Barz W, Reinhard E (eds) op cit, Springer-Verlag, New York, p 143–153

    Chapter  Google Scholar 

  • Kutney JP (1985) Plant tissue cultures get around the search for natural drugs. Industrial Chemical News, November, p 20–21

    Google Scholar 

  • Lee JM, An G (1986) Industrial application and genetic engineering of plant cell cultures. Enzyme Microb Technol 8: 260–265

    Article  CAS  Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plant in plant tissues grown in vitro. Nature 307: 363–364

    Article  Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsh RB (1986) Transformation of Arabidopsis thalianawith Agrobacterium tumefaciens. Science 234: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Marx JL (1987) Rice plants regenerated from protoplasts. Science 235: 31–32

    Article  PubMed  CAS  Google Scholar 

  • Monroe D (1987) Potentiometric immunoassay. American Clinical Products Review, March, p 31–39

    Google Scholar 

  • Morris P (1985) Membrane transport in protoplasts. In: Pilet P-E (ed) The Physiological Properties of Plant Protoplasts. Springer-Verlag, New York, p 54–67

    Chapter  Google Scholar 

  • Navituna F, Park JM (1986) Improvements relating to biotransformation reactions. UK Pat Applic 2,168,721A, June 25

    Google Scholar 

  • Netzer W (1987) Technologies and market forces shape the form of agribiotech products. Genetic Engineering News, February, p 16–17

    Google Scholar 

  • Orr T (1985) Organelle transfer and mutagenesis in crop improvement. Genetic Engineering News, October, p 17

    Google Scholar 

  • Ow DW, Wood KV, DeLuca M, de Wet JR, Helinski DR, Howell S (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Rathore KS, Goldsworthy A (1985) Electrical control of shoot regeneration in plant tissue cultures. Bio/Technology 3: 1107–1109

    Article  Google Scholar 

  • Reich TJ, Iyer VN, Miki BL (1986) Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids. Bio/Technology 4: 1001–1004

    Article  CAS  Google Scholar 

  • Sahai O, Knuth M (1985) Commercializing plant tissue culture processes: economics, problems, and prospects. Biotechnology Progress 1: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann R, Wellmann E (1983) Somatic embryogenesis of tissue cultures of Papaver somniferumand Papaver orientaleand its relationship to alkaloid and lipid metabolism. Plant Cell Reports 2: 88–91

    Article  CAS  Google Scholar 

  • Sluis CJ, Walker KA (1985) Commercialization of plant tissue culture propagation. International Association Plant Tissue Culture Newsletter 47: 2–12

    Google Scholar 

  • Smith JI, Smart NG, Misawa M, Kurz WGW, Tallevi SG, DiCosmo F (1987) Increased accumulation of indole alkaloids by some cell lines of Catharanthus roseusin response to addition of vanadyl sulphate. Plant Cell Reports, in press

    Google Scholar 

  • Takeda R, Katoh K (1981) Growth and sesquiterpenoid production by Calypogeia granulataInoue cells in suspension culture. Planta 151: 525–530

    Article  CAS  Google Scholar 

  • Ten Hoopen HJG, de Jong MA, Stefess GC, Kossen NWF (1985) Industrial production of secondary metabolites from plant cells in suspension culture: a feasibility study. Acta Agronomica 34(supplement): 11

    Google Scholar 

  • Tran Thanh Van KM (1981) Control of morphogenesis in In Vitro cultures. Ann Rev Plant Physiol 32: 291–311

    Article  Google Scholar 

  • Ulbrich B, Wiesner W, Arens H (1985) Large-scale production of rosemarinic acid from plant cell cultures of Coleus blumeiBenth. In: Neumann K-H, Barz W, Reinhard E (eds) op cit, Springer-Verlag, New York, p 293–303

    Chapter  Google Scholar 

  • Ushiyama K (1987) Nitto Electric Industrial Co, Ltd, Osaka, personal ltr dtd March 19

    Google Scholar 

  • Vietmeyer ND (1986) Lesser-known plants of potential use in agriculture and forestry. Science 232: 1379–1384

    Article  PubMed  CAS  Google Scholar 

  • Wright DC, Park WD, Leopold NR, Hasegawa PM, Janick J (1982) Accumulation of lipids, proteins, alkaloids and anthocyanins during embryo development in vivo of Theobroma cacaoL. JAOCS 59(11): 475–479

    Article  CAS  Google Scholar 

  • Yamada Y, Morikawa H (1985) Protoplast fusion of secondary metabolite-producing cells. In: Neumann K-H, Barz W, Reinhard E (eds) op cit, Springer-Verlag, New York, p 255–271

    Chapter  Google Scholar 

  • Zito SW, Staba EJ (1985) Method for preparing a cell-free homogenate of Chrysanthemum cinerarieaefolium(Trev) Bocc. containing enzymes and methods of use. US Pat 4,525,455, June 25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staba, E.J. (1988). Future Trends in Plant Cell Biotechnology. In: Pais, M.S.S., Mavituna, F., Novais, J.M. (eds) Plant Cell Biotechnology. NATO ASI Series, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73157-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73157-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73159-4

  • Online ISBN: 978-3-642-73157-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics