Skip to main content

The Role of Polypeptide Growth Factors in Phenotypic Transformation of Normal Rat Kidney Cells

  • Conference paper
Cell to Cell Signals in Mammalian Development

Part of the book series: NATO ASI Series ((ASIH,volume 26))

Summary

Using growth factors-defined and serum—free culture media, we have shown that phenotypic transformation of normal rat kidney cells does not require specific polypeptide growth factors but more generally reflects the ability of these cells to respond to multiple growth factors. Epidermal growth factor and platelet-derived growth factor contribute to this process by a direct mitogenic action on these cells, modulating agents like transforming growth factor—β and retinoic acid have an indirect growth stimulating effect. Some aspects of the mechanism whereby these modulating agents can exert their action will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzano MA, Roberts AB, Meyers CA, Komoriya A, Lamb LC, Smith JM, Sporn MB (1982) Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res. 42:4776–4778

    PubMed  CAS  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor-β in human platelets. Identification of a major storage site purification and characterization. J Biol Chem 258:7155–7160

    PubMed  CAS  Google Scholar 

  • Assoian RK, Grotendorst GR, Miller DM, Sporn MB (1984a) Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature 309:804–806

    Article  PubMed  CAS  Google Scholar 

  • Assoian RK, Frolik CA, Roberts AB, Miller DM, Sporn MB (1984b) Transforming growth factor-β controls receptor levels for epidermal growth factor in NRK cells. Cell 36:35–41

    Article  PubMed  CAS  Google Scholar 

  • Assoian RK (1985) Biphasic effects of type β transforming growth factor on epidermal growth factor receptors in NRK fibroblasts. J Biol Chem 260:9613–9617

    PubMed  CAS  Google Scholar 

  • Bradshaw GL, Dubes GR (1983) Supplementary factors required for serum-free culture of rat kidney cells of line NRK-49F. In vitro 19:735–742

    Article  PubMed  CAS  Google Scholar 

  • Brown KD, Holley RW (1987) Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type β. Proc Natl Acad Sci USA 84:3743–3747

    Article  PubMed  CAS  Google Scholar 

  • Cheifetz S, Weatherbee JA, Tsang MLS, Anderson JK, Mole JE, Lucas R, Massagué J (1987) The transforming growth factor-β system a complex pattern of cross-reactive ligands and receptors. Cell 48:409–415

    Article  PubMed  CAS  Google Scholar 

  • Childs CB, Proper JA, Tucker RF, Moses HL (1982) Serum contains a platelet-derived transforming growth factor. Proc Natl Acad Sci USA 79:5312–5316

    Article  PubMed  CAS  Google Scholar 

  • Cinofe MA, Fidler IJ (1980) Correlation of patterns of anchorage-independent growth with in vivo behaviour of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77:1039–1043

    Article  Google Scholar 

  • Coffey RJ, Leof EB, Shipley GD, Moses HL (1987) Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cells. J Cell Physiol 132:143–148

    Article  PubMed  CAS  Google Scholar 

  • DeLarco JE, Todaro GJ (1978) Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75:4001–4005

    Article  CAS  Google Scholar 

  • Derynck R (1986) Transforming growth factor-α: structure and biological activities. J Cell Biochem 32:293–304

    Article  PubMed  CAS  Google Scholar 

  • Fava RA, McClure DB (1987) Fibronectin-associated transforming growth factor. J Cell Physiol 131:184–189

    Article  PubMed  CAS  Google Scholar 

  • Frolik CA, Roller PP, Cone JL, Dart LL, Smith DM, Sporn MB (1984) Inhibition of transforming growth factor-induced cell growth in soft agar by oxidized polyamines. Arch Biochem Biophys 230:93–102

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629

    Article  PubMed  CAS  Google Scholar 

  • Goustin AS, Leof EB, Shipley GD, Moses HL (1986) Growth factors and cancer. Cancer Res 46:1015–1029

    PubMed  CAS  Google Scholar 

  • Goustin AS, Nuttall GA, Leof EB, Ranganathan G, Moses HL (1987) Transforming growth factor type β can act as a potent competence factor for AKR-2B cells. Exp Cell Res 172:293–303

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Westermark B (1984) Growth factors: mechanism of action and relation to oncogenes. Cell 37:9–20

    Article  PubMed  CAS  Google Scholar 

  • Ignotz RA, Massagué J (1986) Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345

    PubMed  CAS  Google Scholar 

  • Jetten AM (1983) Action of retinoids on the anchorage-independent growth of normal rat kidney fibroblasts induced by 12–0-tetradecanoyl phorbol-13-acetate or sarcoma growth factor. Cancer Res 43:68–72

    PubMed  CAS  Google Scholar 

  • Kaplan PL, Anderson M, Ozanne B (1982) Transforming growth factor(s) production enables cells to grow in the absence of serum: an autocrine system. Proc Natl Acad Sci USA 79:485–489

    Article  PubMed  CAS  Google Scholar 

  • Kaplan PL, Ozanne B (1983) Cellular responsiveness to growth factors correlates with a cell’s ability to express the transformed phenotype. Cell 33:931–938.

    Article  PubMed  CAS  Google Scholar 

  • Leof EB, Proper JA, Goustin AS, Shipley GD, DiCorleto PE, Moses HL (1986) Induction of c—sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor β: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 83:2453–2457

    Article  PubMed  CAS  Google Scholar 

  • Levine AE, Crandall CA (1987) Effects of N, N dimethyl formamide and retinoic acid on transforming growth factor—β induced mitogenesis in AKR—2B mouse embryo fibroblasts. Cancer Res 47:4278–4282

    PubMed  CAS  Google Scholar 

  • Libby J, Martinez R, Weber MJ (1986) Tyrosine phosphorylation in cells treated with transforming growth factor-β. J Cell Physiol 129:159–166

    Article  PubMed  CAS  Google Scholar 

  • Massagué J (1985a) Transforming growth factor—β modulates the high—affinity receptors for epidermal growth factor and transforming growth factor-α. J Cell Biol 100:1508–1514

    Article  PubMed  Google Scholar 

  • Massagué J, Kelly B, Mottola C (1985b) Stimulation by insulin-like growth factors is required for cellular transformation by type β transforming growth factor. J Biol Chem 260:4551–4554

    PubMed  Google Scholar 

  • Moses HL, Tucker RF, Leof EB, Coffey RJ, Halper J, Shipley GD (1985) Type-β transforming growth factor is a growth stimulator and a growth inhibitor. In: “Growth factor and Transformation”. Cancer cells 3:65–71. Cold Spring Harbor Laboratory

    CAS  Google Scholar 

  • Ozanne B, Wheeler T, Kaplan PL (1982) Cells transformed by RNA and DNA tumor viruses produce transforming growth factors. Feder Proceed 41:3004–3007

    CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450

    Article  PubMed  CAS  Google Scholar 

  • Rapp UR, Gunnell M, Marquardt H (1983) Normal mouse serum contains peptides with induce fibroblasts to grow in soft agar. J Cell Biochem 21:29–38

    Article  PubMed  CAS  Google Scholar 

  • Rizzino A (1984) Behavior of transforming growth factors in serum—free media: an improved assay for transforming growth factors. In vitro 20:815–822

    Article  PubMed  CAS  Google Scholar 

  • Rizzino A, Ruff E, Rizzino H (1986) Induction and modulation of anchorage—independent growth by platelet-derived growth factor fibroblast growth factor and transforming growth factor-β. Cancer Res 46:2816–2820

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1984) Antagonistic actions of retinoic acid and dexamethasone on anchorage—independent growth and epidermal growth factor binding of normal rat kidney cells. Cancer Res 44:1635–1641

    PubMed  CAS  Google Scholar 

  • Schroder EW, Rapaport E, Black PH (1983) Retinoids and cell proliferation. Cancer Surveys 2:223–241

    Google Scholar 

  • Shin SI, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage—independent growth in vitro. Proc Natl Acad Sci USA 72:4435–4439

    Article  PubMed  CAS  Google Scholar 

  • Shipley GD, Tucker RF, Moses HL (1985) Type β transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR—2B cells into S phase after a prolonged prereplicative interval. Proc Natl Acad Sci USA 82: 4147–4151

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor—beta. J Cell Biol 105:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Timmers HTM, Van Zoelen EJJ, Bos JL, Van der Eb AJ (1988) Cells transformed by adenovirus type 12 but not by type 5 are dependent on insulin or insulin—like growth factor I for their proliferation. J Biol Chem 263:1329–1335

    PubMed  CAS  Google Scholar 

  • Todaro GJ, De Larco JE, Sporn MB (1987) Retinoids block phenotypic cell transformation produced by sarcoma growth factor. Nature 276:272–274

    Article  Google Scholar 

  • Van der Burg B, Rutteman GR, Blankenstein MA, De Laat SW, Van Zoelen EJJ (1988) Mitogenic Stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134:101–108

    Article  PubMed  Google Scholar 

  • Van Zoelen EJJ, Van Oostwaard TMJ, Van der Saag PT, De Laat SW (1985) Phenotypic transformation of normal rat kidney cells in a growth factor-defined medium: Induction by a neuroblastoma-derived transforming growth factor independently of the EGF receptor. J Cell Physiol 123:151–160

    Article  PubMed  Google Scholar 

  • Van Zoelen EJJ, Van Oostwaard TMJ, De Laat SW (1986) Transforming growth factor-β and retinoic acid modulate phenotypic transformation of normal rat kidney cells induced by epidermal growth factor and platelet-derived growth factor. J Biol Chem 261:5003–5009

    PubMed  Google Scholar 

  • Van Zoelen EJJ, Van Rooijen MA, Van Oostwaard TMJ, De Laat SW (1987) Production of transforming growth factors by simian sarcoma virus-transformed cells. Cancer Res 47:1582–1587

    PubMed  Google Scholar 

  • Van Zoelen EJJ, Van Oostwaard TMJ, De Laat SW (1988) The role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells. J Biol Chem 263:64–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Zoelen, E.J.J. (1989). The Role of Polypeptide Growth Factors in Phenotypic Transformation of Normal Rat Kidney Cells. In: de Laat, S.W., Bluemink, J.G., Mummery, C.L. (eds) Cell to Cell Signals in Mammalian Development. NATO ASI Series, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73142-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73142-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73144-0

  • Online ISBN: 978-3-642-73142-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics