Advertisement

Angiogenesis in the adult heart

  • W. Schaper
Conference paper

Summary

We have studied the development of the collateral circulation in the heart in response to gradual and progressive coronary artery occlusion. When the coronary stenosis becomes critical, tissue ischemia occurs, which we believe leads to the production (and probably to release from storage sites) of tissue hormones (mitogens) that lead to mitosis of endothelial and smooth muscle cells. We have identified from hearts several known mitogens (aFGF, bFGF), non-mitogenic angiogenic factors (TGF-β), a new anti-mitogen, and a new myocyte-derived growth factor (structures of the last two not yet elucidated). An important principle in the development of collaterals is the remodeling of pre-existing small vessels into the much larger vascular structure. To accomodate new cells old structures have to be removed by controlled proteolysis (tPA, uPA, elastase).

Key words

Collateral circulation growth factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham J, Mergia A, Whang J, Tumolo A, Friedman J, Hjerrild K, Gospodarowicz D, Fiddes J (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:545–548PubMedCrossRefGoogle Scholar
  2. 2.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (eds) Molecular Biology of the Cell: Differentiated Cells and the Maintenance of Tissues. Garland Publishing Inc., New York London 1989, pp 952–997Google Scholar
  3. 3.
    Belyavsky AV, Rajewsky TK (1989) PCR-based library construction: general cDNA libraries at the level of a few cells. Nucl Acids Res 21:2919–2932CrossRefGoogle Scholar
  4. 4.
    Borgers M, Schaper J, Schaper W (1971) Adenosine producing sites in the mammalian heart — a cytochemical study. J Mol Cell Cardiol 3:287–296PubMedCrossRefGoogle Scholar
  5. 5.
    DeBrabander M, Schaper W, Verheyen F (1973) Regenerative changes in the porcine heart after gradual and chronic coronary artery occlusion. Aschoffs Arch 149:170–185Google Scholar
  6. 6.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMedCrossRefGoogle Scholar
  7. 7.
    Folkman J, Klagsbrun M (1987) A family of angiogenic peptides. Nature 329:671–672PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275PubMedCrossRefGoogle Scholar
  9. 9.
    Görge G, Schmidt T, Ito B, Pantely G, Schaper W (1989) Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res Cardiol 84:524–535PubMedCrossRefGoogle Scholar
  10. 10.
    Heldin C, Westermark B (1988) Platelet-derived growth factor and its relation to oncogenes. ISI Atlas of Science: Immunology 44-48Google Scholar
  11. 11.
    Hla T, Maciag T (1990) Isolation of immediate-early differentiation mRNAs by enzymatic amplification of substracted cDNA from human endothelial cells. Basic Res Cardiol 167:637–643Google Scholar
  12. 12.
    Löms Z-H, HW (1989) The biology of the monocyte system. Eur J Cell Biol 49:1–12Google Scholar
  13. 13.
    Montesano RP, Möhle-Steinlein S, Risau U, Wagner W, Orci EL (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle t-oncogene. Cell 62:435–445PubMedCrossRefGoogle Scholar
  14. 14.
    Pasyk S, Flameng W, Wüsten B, Schaper W (1976) Influence of tachycardia on regional myocardial flow in chronic experimental coronary occlusion. Basic Res Cardiol 71:243–251PubMedCrossRefGoogle Scholar
  15. 15.
    Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinseifer B (1982) DNA synthesis in coronary collaterals after coronary artery occlusion in conscious dog. Am J Physiol 242:H1031–H1037PubMedGoogle Scholar
  16. 16.
    Quinkler W, Lüthe N, Maasberg M, Lottspeich F, Schaper W (1988) Acidic fibroblast growth factor (a-FGF) is present in bovine, canine, and porcine heart. Z Kardiol 77 (Suppl I):214–00 (abstr)Google Scholar
  17. 17.
    Quinkler W, Maasberg M, Bernotat-Danielowski S, Lüthe N, Sharma H, Schaper W (1989) Isolation of heparin binding growth factors from bovine, porcine, and canine hearts. Eur J Biochem 181:67–73PubMedCrossRefGoogle Scholar
  18. 18.
    Risau W, Ekblom P (1986) Growth factors and the embryonic kidney. In: Serrero G (ed) Progress in clinical and biological research, hormonal control of embryonic and cellular differentiation. Liss, New YorkGoogle Scholar
  19. 19.
    Risau W, Ekblom P (1986) Production of heparin-binding angiogenesis factor by the embryonic kidney. J Cell Biol 103:1101–1107PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts A, Anzano M, Lam L, Smith J, Sporn M (1981) New class of transforming growth factors: potentiated by epidermal growth factor isolation from neoplastic tissues. Proc Natl Acad Sci USA 78:5339–5343PubMedCrossRefGoogle Scholar
  21. 21.
    Rogelj S, Weinberg R, Fanning P, Klagsbrun M (1988) Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175PubMedCrossRefGoogle Scholar
  22. 22.
    Roth D, White F, Bloor C (1988) Altered minimal coronary resistance to antegrade reflow after chronic coronary artery occlusion in swine. Circ Res 63:330–339PubMedGoogle Scholar
  23. 23.
    Schaper J, Borgers M, Xhonneux R, Schaper W (1973) Cortisone influences developing collaterals, Part 1 (A morphologic study). Virchows Arch (Pathol Anat) 361:263–282CrossRefGoogle Scholar
  24. 24.
    Schaper J, Koenig R, Franz D, Schaper W (1976) The endothelial surface of growing coronary collateral arteries. Intimai margination and diapedesis of monocytes A combined SEM and TEM study. Virchows Arch (Pathol Anat) 370:193–205Google Scholar
  25. 25.
    Schaper W (1967) Tangential wall stress as a molding force in the development of collateral vessels in the canine heart. Experientia (Basel) 23:595–598CrossRefGoogle Scholar
  26. 26.
    Schaper W (1971) The Collateral Circulation of the Heart. 1971 North-Holland Publishing Company. AmsterdamGoogle Scholar
  27. 27.
    Schaper W, DeBrabander M, Lewi P (1971) DNA-synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 28:671–679PubMedGoogle Scholar
  28. 28.
    Schaper W, Flameng W, Snoeckx L, Jageneau A (1971) Der Einfluß körperlichen Trainings auf den Kollateralkreislauf des Herzens. Verh Dt Ges Kreislaufforschg 37:112–121CrossRefGoogle Scholar
  29. 29.
    Schaper W, Schaper J (1969) DNA-synthesis in developing coronary collateral vessels. Scientific Exhibit. Circulation 40:126 (abstract)Google Scholar
  30. 30.
    Schaper W, Schaper J, Xhonneux R et al. (1969) The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardiovasc Res 3:315–323PubMedCrossRefGoogle Scholar
  31. 31.
    Schaper W, Vandesteene R (1967) The rate of growth of interarterial anastomoses in chronic coronary artery occlusion. Life Sci 6:1673PubMedCrossRefGoogle Scholar
  32. 32.
    Scheel K, Fitzgerald E, Martin R, Larsen R (1979) The possible role of mechanical stresses on coronary collateral development during gradual coronary occlusion — a simulation study. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford 489–518Google Scholar
  33. 33.
    Schmidt T, Renczes R, Schaper J, Stämmler G, Möbs A, Schaper W (1988) Kollateralentwicklung im ischämischen Myokard des Schweines. Z Kardiol 77 (Suppl I):106 (abstr)Google Scholar
  34. 34.
    Schoop W, Jahn W (1961) Entwicklungsstadien arterieller Kollateralen und ihre begriffliche Definition. Z Kreislaufforsch 50:249PubMedGoogle Scholar
  35. 35.
    Schreiber, Kenney, Kowalski, Thomas, Gimenez-Gallego, Rios-Candelore, DiSalvo, Barritault, Courty, Courtois, Moenner, Loret, Burgess, Mehlmann, Friesel, Johnson, Maciag T (1985) A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic fibroblast growth factor, and eye-derived growth factor-II. J Cell Biol 101:1623–1626PubMedCrossRefGoogle Scholar
  36. 36.
    Schreiber A, Kenney J, Kowalski W, Friesel R, Mehlman T, Maciag T (1985) Interaction of endothelial cell growth factor with heparin: Characterization by receptor and antibody recognition. Proc Natl Acad Sci USA 82:6138–6142PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma H, Wünsch M, Kandolf R, Schaper W (1989) Angiogenesis by slow coronary artery occlusion in the pig heart: Expression of different growth factors mRNAs. J Mol Cell Cardiol 21 (Suppl III):24 (abstr)CrossRefGoogle Scholar
  38. 38.
    Timblin CB, Kuehl JW (1990) Application for PCR technology to substractive cDNA cloning: identification of genes expressed specifically in murine plasmocytoma cells. Nucl Acids Res 31:1587–1593CrossRefGoogle Scholar
  39. 39.
    Usuki K, Heldin N, Miyazono K, Ishikawa F, Takaku F, Westermark B, Heldin C (1989) Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture. Proc Natl Acad Sci USA 86:7427–7431PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1991

Authors and Affiliations

  • W. Schaper
    • 1
  1. 1.Department of Experimental CardiologyMax-Planck-InstituteBad NauheimGermany

Personalised recommendations