Skip to main content

Modulation of Neuronotrophic Factor Action by Exogenous Gangliosides

  • Conference paper
Gangliosides and Modulation of Neuronal Functions

Part of the book series: NATO ASI Series ((ASIH,volume 7))

Abstract

Neuronal maintenance, function and repair capabilities may depend in vivo — as they do in vitro — on the availability to the neuron of appropriate extrinsic agents. In vivo, nerve cells are subject to influences, both stimulatory and inhibitory, derived from their physical environment (extracellular fluid and matrix) and their cellular environment (glial cells, presynaptic neurons, postsynaptic innervation targets), which can apply in pathological as well as in normal circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamakawa T, Nagai Y (1978) Glycolipids at the cell surface and their biological functions. Trends Biochem Sci 3: 12 8–131

    Google Scholar 

  2. Ando S (1983) Gangliosides in the nervous system. Neurochem Int 5: 50 7–537

    Google Scholar 

  3. Suzuki K (1965) The pattern of mammalian brain gangliosides. III. Regional and developmental differences. J Neurochem 12: 969–979

    Article  CAS  Google Scholar 

  4. Rapport I, Gorio A (1981) Gangliosides in Neurological and Neuromuscular Function, Developmental and Repair. Raven, New York.

    Google Scholar 

  5. Purpura DP, Baker HJ (1977) Neurite induction in mature cortical neurones in feline GMl-ganglioside storage disease. Nature (Lond) 266: 553–554

    Article  CAS  Google Scholar 

  6. Purpura DP, Baker HJ (1978) Meganeurites and other aberrant processes of neurons in feline GMl-gangliosidosis: a Golgi study. Brain Res 143: 13–26

    Article  PubMed  CAS  Google Scholar 

  7. Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107: 315–396

    Article  PubMed  CAS  Google Scholar 

  8. Levi-Montalcini R, Meyer R, Hamburger V (1954) In vitro experiments on the effect of mouse sarcoma 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14: 4 9–57

    Google Scholar 

  9. Roisen FJ, Bartfield H, Nagele R, Yorke E (1981) Ganglios ide stimulation of axonal sprouting in vitro. Science 214: 577–578

    Article  PubMed  CAS  Google Scholar 

  10. Leon A, Benvegnu D, Dal Toso R, Presti D, Facci L, Giorgi O, Toffano G (1984) Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GMl effects on neuronal repair. J Neurosci Res 12: 277–287

    Article  PubMed  CAS  Google Scholar 

  11. Skaper SD, Selak I, Varon S (1983) Serum - and substratum - dependent modulation of neuritic growth. J Neurosci Res 9: 359–369

    Article  PubMed  CAS  Google Scholar 

  12. Skaper SD, Varon S (1985) Ganglioside GMl overcomes serum inhibition of neuritic outgrowth. Int J Devi Neurosci 3: 187–198

    Article  CAS  Google Scholar 

  13. Barbin G, Manthorpe M, Varon S (1984) Purification of the chick eye Ciliary Neuronotrophic Factor ( CNTF ). J Neurochem 43: 1468–1478

    Article  PubMed  CAS  Google Scholar 

  14. Skaper SD, Katoh-Semba R, Varon S (1985) GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Dev Brain Res 23: 19–26

    Article  CAS  Google Scholar 

  15. Selak I, Skaper SD, Varon S (1985) Pyruvate participation in the low molecular weight trophic activity for CNS neurons in glia-conditioned media. J Neurosci 5: 23–28

    PubMed  CAS  Google Scholar 

  16. Doherty Pf Dickson JG, Flanigan TP, Walsh FS (1985) Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J Neurochem 44: 1259–1265

    Article  PubMed  CAS  Google Scholar 

  17. Ferrari G, Fabris M, Gorio A (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Dev Brain Res 8: 215–222

    Article  CAS  Google Scholar 

  18. Katoh-Semba R, Skaper SD, Varon S (1984) Interaction of GM1 ganglioside with PC 12 pheochromocytoma cells: serum and NGF-dependent effects on neuritic growth (and proliferation). J Neurosci Res 12: 299–310

    Article  PubMed  CAS  Google Scholar 

  19. Toffano G, Benvegnù D, Bonetti AC, Facci L, Leon A, Orlando R, Ghidoni R, Tettamanti G (1980) Interactions of GM1 ganglioside with crude rat brain neuronal membranes. J Neurochem 35: 861–866

    Article  PubMed  CAS  Google Scholar 

  20. Leon A, Facci L, Benvegnù D, Toffano G (1982) Morphological and biochemical effects of gangliosides in neuroblastoma cells. Dev Neurosci 5: 108–114

    Article  PubMed  CAS  Google Scholar 

  21. Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42: 299–305

    Article  PubMed  CAS  Google Scholar 

  22. Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer’s disease. Ann Neurol 10: 499–505

    Article  PubMed  CAS  Google Scholar 

  23. Varon S, Manthorpe M, Williams LR (1984) Neuronotrophic and neurite promoting factors and their clinical potentials. Dev Neurosci 6: 73–100

    Article  CAS  Google Scholar 

  24. Björkland A, Stenevi U (1981) In vivo evidence for a hippocampal adrenergic neurotrophic factor specifically released on septal deafferentiation. Brain Res 229: 403–428

    Article  Google Scholar 

  25. Manthorpe M, Nieto-Sampedro M, Skaper SD, Lewis ER, Barbin G, Longo FM, Cotman CW, Varon S (1983) Neuronotr ophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity. Brain Res 267: 47–56

    Article  PubMed  CAS  Google Scholar 

  26. Nieto-Sampedro M, Manthorpe M, Barbin G, Varon S, Cotman CW (1983) Injury-induced neuronotrophic activity in adult rat brain. Correlation with survival of delayed implants in a wound cavity. J Neurosci 3: 2219–2229

    PubMed  CAS  Google Scholar 

  27. Gage FH, Björkland A, Stenevi U (1984) Denervation releases a neuronal survival factor in adult rat hippocampus. Nature (London) 308: 637–639

    Article  CAS  Google Scholar 

  28. Korsching S, Heumann R, Thoenen H, Hefti F (1986) Cholinergic denervation of the rat hippocampus by fimbrial transection leads to a transient accumulation of nerve growth factor ( NGF) without change in mRNANGF content. Neurosci Lett 66: 175–180

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida K, Kohsaka S, Idei T, Nii S, Otani M, Toya S, Tsukada Y (1986) Septal deafferentiation enhances the neurotrophic effects of rat hippocampus on cultured neural cells from the central nervous system. Neurosci Lett 66: 181–186

    Article  PubMed  CAS  Google Scholar 

  30. Longo FM, Skaper SD, Manthorpe M, Williams LR, Lundborg G, Varon S (1983) Temporal changes in neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Exp Neurol 81: 756–769

    Article  PubMed  CAS  Google Scholar 

  31. Schonfeld AR, Heacock AM, Katzman R (1985) Neuronotrophic factors: Effects on central cholinergic regeneration in vivo. Brain Res 336: 297–301

    Article  PubMed  CAS  Google Scholar 

  32. Nieto-Sampedro M, Whittemore SR, Needels DL, Larson J, Cotman CW (1984) The survival of brain transplants is enhanced by extracts from injured brain. Proc Natl Acad Sci USA 81: 62 50–6254

    Google Scholar 

  33. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J 4: 1389–1393

    PubMed  CAS  Google Scholar 

  34. Sheldon DL, Reichardt LF (1986) Studies on the expression of the nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggests that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci USA 83: 2714–2718

    Article  Google Scholar 

  35. Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6: 2155–2162

    PubMed  CAS  Google Scholar 

  36. Gorio A, Carmignoto G, Facci L, Finesso M (1980) Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Res 197: 236–241

    Article  PubMed  CAS  Google Scholar 

  37. Sparrow JR, Grafstein B (1982) Sciatic nerve regeneration in ganglioside-treated rats. Exp Neurol 77: 230–235

    Article  PubMed  CAS  Google Scholar 

  38. Robb GR, Keynes RJ (1984) Stimulation of nodal and terminal sprouting of mouse motor nerves by gangliosides. Brain Res 295: 368–371

    Article  PubMed  CAS  Google Scholar 

  39. Agnati LF, Fuxe K, Calzà L, Benfenati F, Cavicchioli L, Toffano G, Goldstein M (1983) Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting. Acta Physiol Scand 119: 347–363

    Article  PubMed  CAS  Google Scholar 

  40. Toffano G, Savoini GE, Moroni F, Lombardi G, Calzà L, Agnati LF (1984) Chronic GM1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat. Brain Res 296: 233–239

    Article  PubMed  CAS  Google Scholar 

  41. Wojcik M, Ulas J, Oderfeld-Nowak B (1982) The stimulating effect of ganglioside injections on the recovery of choline acetyl transferase and acetylcholinesterase activities in the hippocampus of the rat after septallesions. Neurosci 7: 495–499

    Article  CAS  Google Scholar 

  42. Gradkowska M, Skup M, Kiedrowski L, Calzolari S, Oderfeld-Nowak B (1986) The effect of GM1 ganglioside on cholinergic and serotonergic systems in the rat hippocampus following partial denervation is dependent on the degree of fiber degeneration. Brain Res 375: 417–422

    Article  PubMed  CAS  Google Scholar 

  43. Ceccarelli B, Aporti F, Finesso M (1976) Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation. Adv Exp Med Biol 71: 275–293

    PubMed  CAS  Google Scholar 

  44. Karpiak SE (1983) Ganglioside treatment improves recovery of alteration behavior after unilateral entorhinal cortex lesion. Exp Neurol 81: 330–339

    Article  PubMed  CAS  Google Scholar 

  45. Sabel BA, Slavin MD, Stein DG (1984) GM1 ganglioside treatment facilitates behavioral recovery following bilateral brain damage. Science 225: 340–342

    Article  PubMed  CAS  Google Scholar 

  46. Li YS, Mahadik SP, Rapport MM, Karpiak SE (1986) Acute effects of GM1 ganglioside: reduction in both behavioral asymmetry and loss of Na+, K+-ATPase after nigrostriatal transection. Brain Res 377: 292–297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skaper, S.D. (1987). Modulation of Neuronotrophic Factor Action by Exogenous Gangliosides. In: Rahmann, H. (eds) Gangliosides and Modulation of Neuronal Functions. NATO ASI Series, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71932-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71932-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71934-9

  • Online ISBN: 978-3-642-71932-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics