Skip to main content

Regulation of Extracellular Volume: Critical Evaluation of Natriuretic Hormones

  • Conference paper
Endocrine Regulation of Electrolyte Balance
  • 57 Accesses

Abstract

In a recent editorial entitled “Natriuretic hormones: At last bottled in bond?”, Grantham and Edwards [1] imply that the long and frustrating search for the elusive natriuretic hormone has finally come to an end. In point of fact, although the chemical structures of the recently identified atrial natriuretic factors have been elucidated [2], little is yet known of their physiological significance. Conversely, the chemical structure of the “other” natriuretic hormone, which I shall term the hypothalamic-renal factor, has thus far eluded successful identification, but much information has been gathered on its physiological role in health and disease. Other hormone systems known to enhance salt excretion include the prostaglandins, particularly prostacyclin and prostaglandin E2, the renal kallikrein-kinin system and dopamine In this review, I shall attempt to place in perspective the relative contributions of each of these systems to renal sodium handling, and, as far as possible, comment on their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grantham JJ, Edwards RM (1984) Natriuretic hormones: at last, bottled in bond? J Lab Clin Med 103: 333–336

    PubMed  CAS  Google Scholar 

  2. Curie MG, Geller DM, Cole BR, et al. (1984) Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science 223: 67–69

    Article  Google Scholar 

  3. deWardener HE, Mills IH, Clapham WF, et al. (1961) Studies on the afferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci 21: 249–258

    CAS  Google Scholar 

  4. deWardener HE, Mills IH, Clapham WF, et al. (1961) Studies on the efferent mechanism of sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci 21: 259–264

    Google Scholar 

  5. Bahlman JS, McDonald J, Ventom MG, et al. (1967) The effect on urinary sodium excretion of blood volume expansion without changing the composition of blood in the dog. Clin Sci 32: 403–413

    Google Scholar 

  6. Kaloyanides GJ, Azer M (1971) Evidence of a humoral mechanism in volume expansion natriuresis. J. Clin. Invest 50: 1603–1612

    Article  PubMed  CAS  Google Scholar 

  7. Howards SS, Davis BB, Knox FG, et al. (1968) Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis. J Clin Invest 47: 1561–1572

    Article  PubMed  CAS  Google Scholar 

  8. Daugharty TM, Ueki IF, Nicholas DP, et al. (1972) Comparative renal effects of isoncotic and colloid-free volume expansion in the rat. Am J Physiol 222: 225–233

    PubMed  CAS  Google Scholar 

  9. Stein JH, Osgood RW, Boonjarern S, et al. (1973) A comparison of the segmental analysis of sodium reabsorption during Ringer’s and hyperoncotic albumen infusion in the rat. J Clin Invest 52: 2313–2323

    Article  PubMed  CAS  Google Scholar 

  10. Weber H, Bourgoignie JJ, Bricker NS (1974) Effects of the natriuretic serum fraction on proximal tubular sodium reabsorption. Am J Physiol 226: 419–425

    PubMed  CAS  Google Scholar 

  11. Fine LG, Bourgoignie JJ, Hwang KH, et al. (1976) On the influence of the natriuretic factor from patients with chronic uremia on the bioelectric properties and sodium transport of the isolated mammalian collecting tubule. J Clin Invest 58: 590–597

    Article  PubMed  CAS  Google Scholar 

  12. Godon JP, Nizet A (1974) Release by isolated dog kidney of a natriuretic material following saline loading. Arch Int Physiol Biochim 82: 309–311

    Article  PubMed  CAS  Google Scholar 

  13. Sealey JE, Kirshman JD, Laragh JH (1969) Natriuretic activity in plasma and urine of salt-loaded man and sheep. J Clin Invest 48: 2210–2224

    Article  PubMed  CAS  Google Scholar 

  14. Clarkson EM, Raw SM, deWardener HE (1976) Two natriuretic substances in extracts of urine from normal man when salt-depleted and salt-loaded. Kidney Int 10: 381–394

    Article  PubMed  CAS  Google Scholar 

  15. Clarkson EM, Raw SM, deWardener HE (1979) Further observations on a low molecular weight natriuretic substance in the urine of normal man. Kidney Int 16: 710–721

    Article  PubMed  CAS  Google Scholar 

  16. Bourgoignie JJ, Klahr S, Bricker NS (1971) Inhibition of transepithelial sodium transport in the frog skin by a low molecular weight fraction of uremic serum. J Clin Invest 50: 303–311

    Article  PubMed  CAS  Google Scholar 

  17. Buckalew VM Jr, Nelson DB (1974) Natriuretic and sodium transport inhibitory activity in plasma of volume-expanded dogs. Kidney Int 5: 12–22

    Article  PubMed  CAS  Google Scholar 

  18. Gonick HC, Kramer HJ, Paul W, et al. (1977) Circulating inhibitor of sodium-potassiumactivated adenosine triphosphatase after expansion of extracellular fluid volume in rats. Clin Sci 53: 329–334

    CAS  Google Scholar 

  19. Kramer HJ, Bracker A, Kruck F (1977) Antinatriferic activity in human plasma following acute and chronic salt-loading. Kidney Int 12: 214–222

    Article  PubMed  CAS  Google Scholar 

  20. Gruber KA, Buckalew VM (1978) Further characterization and evidence fora precursor in the formation of plasma antinatriferic factor. Proc Soc Exp Biol Med 159: 463–467

    PubMed  CAS  Google Scholar 

  21. Gruber KA, Whittaker JM, Buckalew VM Jr (1980) Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature 287: 743–745

    Article  PubMed  CAS  Google Scholar 

  22. Veress AT, Milojevic S, Sonnenberg H (1980) Characterization of the natriuretic activity in the plasma of hypervolaemic rats. Clin Sci 59: 183–189

    PubMed  CAS  Google Scholar 

  23. Pearce JW, Veress AT (1975) Concentration and bioassay of a natriuretic factor in plasma of volume expanded rats. Can J Physiol Pharmacol 53: 742–747

    Article  CAS  Google Scholar 

  24. Gonick HC, Saldanha LF (1975) A natriuretic principle derived from kidney tissue of volume expanded rats. J Clin Invest 56: 247–255

    Article  PubMed  CAS  Google Scholar 

  25. Hillyard SD, Lu E, Gonick HC (1976) Further characterization of the natriuretic factor derived from kidney tissue of volume-expanded rats: effects on short-circuit current and Na-K-ATPase activity. Circ Res 38: 250–254

    PubMed  CAS  Google Scholar 

  26. Louis F, Favre H (1980) Natriuretic factor in rats acutely expanded by Ringer’s versus albumin solution. Kidney Int 18: 20–28

    Article  PubMed  CAS  Google Scholar 

  27. Lichstein D, Samuelov S (1980) Endogenous “ouabain like” activity in rat brain. Biochem Biophys Res Commun 96: 1518–1523

    Article  Google Scholar 

  28. Haupert GT Jr, Sancho JM (1979) Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci USA 76: 4658–4660

    Article  PubMed  CAS  Google Scholar 

  29. Haupert GT Jr, Carilli CT, Cantley LC (1984) Hypothalamic sodium-transport inhibitor is a high-affinity reversible inhibitor of Na+-K+-ATPase. Am J Physiol 247: F919 - F924

    PubMed  CAS  Google Scholar 

  30. Gonick HC (1978) Mechnism of action of natriuretic hormone: Inhibitor of Na-K-ATPase. In: Kramer HJ, Kruck F (eds) Natriuretic hormone. Springer Berlin Heidelberg New York, pp 108–121

    Google Scholar 

  31. Lichardus B, Mitro A, Cort JH (1965) Size of cell nuclei in hypothalamus of the rat as a function of salt loading. Am J Physiol 208: 1075–1077

    PubMed  CAS  Google Scholar 

  32. Cort JH, Lichardus B (1963) The role of the hypothalamus in the renal response to the carotid sinus pressor reflex. Physiol Bohemoslov 12: 389–396

    PubMed  CAS  Google Scholar 

  33. Cort JH (1968) The source and chemical nature of the natriuretic activity of plasma evoked by saluretic “volume reflexes”. Can J Physiol Pharmacol 46: 325–333

    Article  PubMed  CAS  Google Scholar 

  34. Keeler R (1975) Effect of chronic preoptic lesions on the renal excretion of sodium in rats. Am J Physiol 228: 1725–1728

    PubMed  CAS  Google Scholar 

  35. Bealer SL, Haywood JR, Gruber KA, et al (1983) Preoptic-hypothalamic periventricular lesions reduce natriuresis to volume expansion. Am J Physiol 244: R51 - R57

    PubMed  CAS  Google Scholar 

  36. Kaloyanides GJ, Balabanian MB, Bowman RL (1978) Evidence that the brain participates in the humoral natriuretic mechanism of blood volume expansion in the dog. J Clin Invest 62: 1288–1295

    Article  PubMed  CAS  Google Scholar 

  37. Lichardus B, Ponec J (1973) On the role of the hypophysis in the renal mechanism of body fluid volume regulation. Endokrinologie 61: 403–412

    PubMed  CAS  Google Scholar 

  38. Sedlakova E, Prusik Z, Skopkova J, et al. (1974) Isolation of a tridecapeptide from natriuretic fractions of bovine posterior pituitary. Eur J Clin Invest 4: 285–292

    PubMed  CAS  Google Scholar 

  39. Clarkson EM, Koutsaimanis KG, Davidman M, et al. (1974) The effect of brain extracts on urinary sodium excretion of the rat and the intracellular sodium concentration of renal tubule fragments. Clin Sci 47: 201–213

    CAS  Google Scholar 

  40. Alaghband-Zadeh J, Fenton S, Hancock K, et al. (1983) Evidence that the hypothalamus may be a source of a circulating Na+-K+-ATPase inhibitor. J Endocrinol 98: 221–226

    Article  PubMed  CAS  Google Scholar 

  41. Nizet A, Tost H, Foidart-Willems J (1974) The control of sodium excretion following saline infusion in dogs. Pflugers Arch 350: 287–298

    Article  PubMed  CAS  Google Scholar 

  42. Louis F, Favre H (1980) Basal activity of the natriuretic factor extracted from the rat kidney as a function of the diet and its role in the regulation of the acute sodium balance. Clin Sci 58: 385–391

    PubMed  CAS  Google Scholar 

  43. Godon JP (1975) Sodium and water retention in experimental glomerulonephritis: the urinary natriuretic material. Nephron 14: 382–389

    Article  PubMed  CAS  Google Scholar 

  44. Godon JP, Dechenne C (1978) In vitro production of a natriuretic material of renal origin. Renal Physiol (Basel) 4: 201–210

    Google Scholar 

  45. Cambier P, Godon JP (1984) Role of prostaglandin in the production of natriuretic factor by the isolated rat kidney. Renal Physiol 7: 163–175

    PubMed  CAS  Google Scholar 

  46. Knock CA, de Wardener HE (1980) Evidence in vivo for a circulating natriuretic substance in rats after expanding the blood volume. Clin Sci 59: 411–421

    CAS  Google Scholar 

  47. Knock CA (1980) Further evidence in vivo for a circulating natriuretic substance after expanding the blood volume in rats. Clin Sci 59: 423–433

    PubMed  CAS  Google Scholar 

  48. Cort JH, Sedlakova E, Kluk I, et al. (1975) Neurophysin binding and natriuretic peptides from the posterior pituitary. Ann NY Acad Sci 248: 336–344

    Article  PubMed  CAS  Google Scholar 

  49. DeBold AJ, Flynn TG (1983) Cardionatrin I: a novel heart peptide with potent diuretic and natriuretic properties. Life Sci 33: 297–302

    Article  CAS  Google Scholar 

  50. Currie MG, Geller DM, Cole BR, et al. (1984) Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science 223: 67–69

    Article  PubMed  CAS  Google Scholar 

  51. Atlas SA, Kleinert HD, Camargo MJ, et al. (1984) Purification, sequencing and synthesis of natriuretic vasoactive rat atrial peptide. Nature 309: 717–722

    Article  PubMed  CAS  Google Scholar 

  52. Jamieson JD, Palade GE (1964) Specific granules in atrial muscle cells. J Cell Biol 23: 151–172

    Article  PubMed  CAS  Google Scholar 

  53. DeBold AJ (1979) Heart atria granularity: effects of changes in water-electrolyte balance. Proc Soc Exp Biol Med 161: 508–511

    CAS  Google Scholar 

  54. DeBold AJ, Borenstein HB, Veress AT, et al. (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28: 89–94

    Article  CAS  Google Scholar 

  55. Briggs JP, Steipe B, Schubert G, et al. (1982) Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Achr 395: 271–276

    Article  CAS  Google Scholar 

  56. Sonnenberg H, Cupples WA, DeBold AJ, et al. (1982) Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol 60: 1149–1152

    Article  PubMed  CAS  Google Scholar 

  57. Camargo MJF, Kleinert HD, Atlas SA, et al. (1984) Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am J Physiol 246: F447 - F456

    PubMed  CAS  Google Scholar 

  58. Marcia R, Thibault G, Jutkowaka J, et al. (1985) Effect of chronic infusion of synthetic atrial natriumetic factor (ANF 8–33) in conscious, two-kidney, one-clip hypertensive rats. Proc Soc Exp Biol Med 178: 155–159

    Google Scholar 

  59. Trippodo NC, Ghai RD, MacPhee AA, et al. (1984) Atrial natriuretic factor: atrial conversion of high to low molecular weight forms. Biochem Biophys Res Commun 119: 282–288

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka I, Misono KS, Inagami T (1984) Atrial natriuretic factor in rat hypothalamus, atria and plasma: determination by specific radioimmunoassay. Biochem Biophys Res Commun 124: 663–668

    Article  PubMed  CAS  Google Scholar 

  61. Plunkett WC, Hutchins PM, Gruber KA, et al. (1982) Evidence for a vascular sensitizing factor in plasma of saline-loaded dogs. Hypertension 4: 581–589

    PubMed  CAS  Google Scholar 

  62. Atarashi K, Mulrow PJ, Franco-Saenz R, et al. (1984) Inhibition of aldosterone production by an atrial extract. Science 224: 992–993

    Article  PubMed  CAS  Google Scholar 

  63. Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233: F 169-F 184

    Google Scholar 

  64. Lifschitz MD (1981) Prostaglandins and renal blood flow: in vivo studies. Kidney lilt 19: 781–785

    Article  CAS  Google Scholar 

  65. Fulgraff G, Meiforth A (1971) Effects of prostaglandins E2 on excretion and reabsorption of sodium and fluid in rat kidneys (micropuncture studies). Pflugers Arch 330: 243–256

    Article  PubMed  CAS  Google Scholar 

  66. Campbell WB, Gomez-Sanchez CE, Adams BV, et al. (1979) Attenuation of angiotensin II- and III-induced aldosterone release by prostaglandin synthesis inhibitors. J Clin Invest 64: 1552–1557

    Article  PubMed  CAS  Google Scholar 

  67. Speckart P, Zia P, Zipser R, et al. (1977) The effect of sodium restriction and prostaglandin inhibition on the renin-angiotensin system in man. J Clin Endocrinol Metab 44: 832–837

    Article  PubMed  CAS  Google Scholar 

  68. Dusing R, Opitz WD, Kramer HJ (1977) The role of prostaglandin in the natriuresis of acutely salt-loaded rats. Nephron 18: 212–219

    Article  PubMed  CAS  Google Scholar 

  69. Donker AJ, Arisz L, Brentjens JR, et al. (1976) The effect of indomethacin on kidney function and plasma renin activity in man. Nephron 17: 288–296

    Article  PubMed  CAS  Google Scholar 

  70. Muther RS, Potter DM, Bennett WM (1981) Aspirin-induced depression of glomerular filtration rate in normal humans: role of sodium balance. Ann Intern Med 94: 317–321

    PubMed  CAS  Google Scholar 

  71. Boyer TD, Zia P, Reynolds TB (1979) Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Gastroenterology 77: 215–222

    PubMed  CAS  Google Scholar 

  72. Coles SA, Fries JS, Kraines RG, et al. (1983) From experiment to experience: side effects of non-steroidal inflammatory agents. Am J Med 74: 820–828

    Article  PubMed  CAS  Google Scholar 

  73. Wilson DR, Honrath U, Sonnenberg H (1982) Prostaglandin synthesis inhibition during volume expansion: collecting duct function. Kidney Int 22: 1–7

    Article  PubMed  CAS  Google Scholar 

  74. Durr J, Favre L, Gaillard R, et al. (1982) Mineralocorticoid escape in man: role of renal prostaglandins. Acta Endocrinol (Copenh) 99: 474–480

    CAS  Google Scholar 

  75. Levinsky NG (1979) The renal kallikrein-kinin system. Circ Res 44: 442–451

    Google Scholar 

  76. Mills IH, MacFarlane NAA, Ward PE, et al. (1976) The renal kallikrein-kinin system and the regulation of salt and water excretion. Fed Proc 35: 181–188

    PubMed  CAS  Google Scholar 

  77. Margolius HS (1984) The kallikrein-kinin system and the kidney. Annu Rev Physiol 46: 309–326

    Article  PubMed  CAS  Google Scholar 

  78. Proud D, Knepper MA, Pisano JJ (1982) Distribution of immunoreactive kallikrein along the rat nephron. Am J Physiol 244: F510–515

    Google Scholar 

  79. Nishimura K, Alhenc-Gelas F, White A, et al. (1980) Activation of membrane bound kallikrein and renin in the kidney. Proc Natl Acad Sci USA 77: 4975–4978

    Article  PubMed  CAS  Google Scholar 

  80. Webster ME, Gilmore JP (1964) Influence of kallin-10 on renal function. Am J Physiol 206: 714–718

    PubMed  CAS  Google Scholar 

  81. Gill JR Jr, Melmon KL, Gillespie L Jr, et al. (1965) Bradykinin and renal function in normal man• effects of adrenergic blockade. Am J Physiol 209: 844–848

    PubMed  CAS  Google Scholar 

  82. Marin-Grez M (1974) The influence of antibodies against bradykinin on isotonic saline diuresis in the rat. Pflugers Arch 350: 231–239

    Article  CAS  Google Scholar 

  83. Holland OB, Chud JM, Braunstein H (1980) Urinary kallikrein excretion in essential and mineralocorticoid hypertension. J Clin Invest 65: 347–356

    Article  PubMed  CAS  Google Scholar 

  84. Lechi A, Covi G, Lechi C, et al. (1976) Urinary kallikrein excretion in Barrter’s syndrome. J Clin Endocrinol Metab 43: 1175–1178

    Article  PubMed  CAS  Google Scholar 

  85. Tornita K, Shugai T, Schirichi M, et al. (1983) Increased urinary kallikrein-like activity in the syndrome of inappropriate secretion of antidiuretic hormone. Nephron 35: 39–48

    Article  Google Scholar 

  86. Vinci JM, Zusman RM, Izzo JL Jr, et al. (1979) Human urinary and plasma kinins. Relationship to sodium-retaining steroids and plasma renin activity. Circ Res 44: 228–237

    PubMed  CAS  Google Scholar 

  87. Marin-Grez M, Oza NB, Carretero OA (1973) The involvement of urinary kallikrein in the renal escape from the sodium-retaining effect of mineralocorticoids. Henry Ford Hosp Med J 21: 85–90

    CAS  Google Scholar 

  88. DeBono E, Mills IH (1974) Simultaneous increases in renal lymph and urine during saline infusion. J Physiol 241: 127p - 128 p

    CAS  Google Scholar 

  89. Levy SB, Frigon RP, Stone R (1978) The relationship of urinary kallikrein excretion to renal salt and water excretion. Clin Sci 54: 39–45

    CAS  Google Scholar 

  90. Mills IH, MacFarlane NAA, Ward PE (1974) Increase in kallikrein excretion during the natriuresis produced by arterial infusion of substance P. Nature 247: 108–109

    Article  PubMed  CAS  Google Scholar 

  91. Croxatto HR, Huidobro F, Rojas M, et al. (1975) The effect of water, sodium overloading, and diuretics upon urinary kallikrein excretion. Adv Exp Med Biol 70: 361–373

    Google Scholar 

  92. Geller RG, Margolius HS, Pisano JJ, et al. (1972) Effects of mineralocorticoids, altered sodium intake, and adrenalectomy on urinary kallikrein in rats. Circ Res 31: 857–861

    PubMed  CAS  Google Scholar 

  93. Margolius HS, Horwitz D, Geller RG, et al. (1974) Urinary kallikrein excretion in normal man. Relationship to sodium intake and sodium-retaining steroids. Circ Res 35: 812–819

    PubMed  CAS  Google Scholar 

  94. MacFarlane NAA, Adeturjibi A, Mills IH (1974) Changes in kallikrein excretion during arterial infusion of angiotensin. J Endocrinol 61: 72 p

    Google Scholar 

  95. Kramer HJ, Moch T, von Sicherer L, et al. (1979) Effects of aprotinin on renal function and urinary prostaglandin excretion in conscious rats after acute salt loading. Clin Sci 56: 547–553

    PubMed  CAS  Google Scholar 

  96. McDonald RH Jr, Goldberg LI, McNay J, et al. (1964) Effects of dopamine in man: augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J Clin Invest 43: 1116–1124

    Article  PubMed  CAS  Google Scholar 

  97. Levinson PD, Goldstein DS, Munson PJ, et al. (1985) Endocrine, renal, and hemodynamic responses to graded dopamine infusions in normal men. J Clin Endocrinol Metab 60: 821

    Article  PubMed  CAS  Google Scholar 

  98. Bello-Reuss E, Higashi Y, Kaneda Y (1982) Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule. Am J Physiol 242: F634 - F640

    PubMed  CAS  Google Scholar 

  99. Ganguly A (1984) Dopaminergic regulation of aldosterone secretion: how credible? Clin Sci 66: 631–637

    PubMed  CAS  Google Scholar 

  100. Ball SG, Gunn IG, Douglas IHS (1982) Renal handling of dopa, dopamine, norepinephrine and epinephrine in the dog. Am J Physiol 242: F56 - F62

    PubMed  CAS  Google Scholar 

  101. Brown MJ, Allison DJ (1981) Renal conversion of plasma dopa to urine dopamine. Br J Clin Pharmacol 12: 251–253

    PubMed  CAS  Google Scholar 

  102. Kuchel O, Buu NT, Unger T (1978) Dopamine-sodium relationship: is dopamine a part of the endogenous natriuretic system? Contrib Nephrol 13: 27–36

    PubMed  CAS  Google Scholar 

  103. Alexander RW, Gill JR Jr, Yamabe H, et al. (1974) Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest 54: 194–200

    Article  PubMed  CAS  Google Scholar 

  104. Faucheux B, Buu NT, Kuchel 0 (1977) Effects of saline and albumin on plasma and urinary catecholamines in dogs. Am J Physiol 232: F123 - F127

    CAS  Google Scholar 

  105. Ball SG, Lee MR (1977) Increased urinary dopamine in salt loaded rats. Clin Sci 52: 20p - 21 p

    Google Scholar 

  106. Krishna GG, Danovitch GM, Sowers JR (1983) Catecholamine responses to central volume expansion produced by head-out water immersion and saline infusion. J Clin Endocrinol Metab 56: 998–1002

    Article  PubMed  CAS  Google Scholar 

  107. Cuche JL, Marchand GR, Greger RF, et al. (1972) Relationship between the adrenergic nervous system and renin during adaptation to upright posture: a possible role for dopamine. Clin Sci 43: 481–491

    PubMed  CAS  Google Scholar 

  108. Kuchel O, Cuche JL, Buu NT, et al. (1977) Catecholamine excretion in idiopathic edema. Decreased dopamine excretion, a pathogenic factor? J Clin Endocrinol Metab 44: 639–646

    Article  PubMed  CAS  Google Scholar 

  109. Pelayo JC, Fildes RD, Eisner GM, et al. (1983) Effects of dopamine blockade on renal sodium excretion. Am J Physiol 245: F247 - F253

    PubMed  CAS  Google Scholar 

  110. McClanahan M, Sowers JR, Beck FWJ, et al. (1985) Dopaminergic regulation of natriuretic response to acute volume expansion in dogs. Clin Sci 68: 263–269

    PubMed  CAS  Google Scholar 

  111. Krishna GG, Danovitch GM, Beck FWJ, et al. (1985) Dopaminergic mediation of the natriuretic response to volume expansion. J Lab Clin Med 105: 214–218

    PubMed  CAS  Google Scholar 

  112. Sealey JE, Atlas SA, Laragh JH (1978) Linking the kallikrein and renin systems via activation of inactive renin. New data and a hypothesis. Am J Med 65: 994–1000

    Article  PubMed  CAS  Google Scholar 

  113. Carretero OA, Scicli AG (1983) The glandular kallikrein-kinin system: role in blood flow and blood pressure regulation and its interrelationship with other vasoactive systems. In: Robertson, JIS (ed) Clinical aspects of essential hypertension. Elsevier, pp 324–347 (Handbook of hypertension, vol 1 )

    Google Scholar 

  114. Naszletti A, McGill JC, Colina-Chourio J (1978) Interrelations of the renal kallikrein-kinin system and the renal prostaglandins in the conscious rat. Influence of mineralocorticoids. Circ Res 43: 799–807

    Google Scholar 

  115. Mills IH, Obika LFO, Newport PA (1978) Stimulation of the renal kallikrein-kinin system by vasoactive substances and its relationship to the excretion of salt and water. Contrib Nephro 112: 132–144

    Google Scholar 

  116. Fitzgerald GA, Hossman V, Hummerich W, et al. (1980) The reninkallikrein-prostaglandin system• plasma active and inactive renin and urinary kallikrein during prostacyclin infusion in man. Prostaglandins and Medicine 5: 445–456

    Article  PubMed  CAS  Google Scholar 

  117. Imbs JL, Schmidt M, Ehrhardt JD, et al. (1984) The sympathetic nervous system and renal sodium handling: Is dopamine involved? J Cardiovasc Pharmacol 6 [Suppl]: S 171-S175

    Article  CAS  Google Scholar 

  118. Kramer HJ, Stinnesbeck B, Klautke G, et al. (1985) Interaction of renal prostaglandins with the renin-angiotensin and renal adrenergic nervous systems in healthy subjects during dietary changes in sodium intake. Clin Sci 68: 387–393

    PubMed  CAS  Google Scholar 

  119. Itabashi A, Shapiro J, Cheung C, et al. (1985) Intrarenal effect of atriopeptin III in the isolated perfused kidney. Kidney Int 27: 311

    Google Scholar 

  120. Lang RE, Thoelken H, Santen D, et al. (1985) Atrial natriuretic factor — a circulating hormone stimulated by volume loading. Nature 314: 264–266

    Article  PubMed  CAS  Google Scholar 

  121. Burnett JC, Jr, Kao PC, Hu, DC, et al. (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231: 1145–1147

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonick, H.C. (1986). Regulation of Extracellular Volume: Critical Evaluation of Natriuretic Hormones. In: Krück, F., Thurau, K. (eds) Endocrine Regulation of Electrolyte Balance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71405-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71405-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16837-9

  • Online ISBN: 978-3-642-71405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics