Skip to main content

Plant-Microbe Interactions

  • Conference paper
Biotechnology: Potentials and Limitations

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 35))

Abstract

All plants are exposed to extremely large numbers of microorganisms; some are pathogenic and some beneficial. The potential damage that can be caused by pathogens appears to be held in check by beneficial microorganisms, many of which are probably unknown to us. Future exploitation of such interactions will be as dependent on a better understanding of the biology of plant-microbe interaction as on developments in biotechnology. Plant nutrition is influenced by nitrogen-fixing microorganisms, mycorrhizal fungi, and possibly other microorganisms. These existing symbioses can be exploited to improve the activities that we understand sufficiently well and to introduce novel functions into the symbionts. Whether the production of growth-promoting substances by microorganisms can be exploited for crop production or not remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, J.; Hedges, R.W.; and Messen. 1985. Inhibitory effects of pseudobactins on uptake of iron by higher plants. Applied Envir. Microbiol. 49: 1090–1093.

    CAS  Google Scholar 

  2. Beringer, J.E. 1984. The significance of symbiotic nitrogen fixation in plant production. CRC Crit. Rev. Plant Sci. 1: 269–286.

    Article  CAS  Google Scholar 

  3. Beringer, J.E., and Tinker, P.B. 1983. The role of microorganisms in plant nutrition. In Proceedings of the British Sulphur Corporation’s 7th International Conference, pp. 113–118. Dulwich: Purley Press.

    Google Scholar 

  4. Brewin, N.J.; Wood, G.A.; and Young, J.P.W. 1983. Contribution of the symbiotic plasmid to the competitiveness of Rhizobium legumi- nosarum. J. Gen. Microbiol. 129: 2973–2977.

    CAS  Google Scholar 

  5. Brown, M.E. 1982. Nitrogen fixation by free-living bacteria associated with plants - fact or fiction? In Bacteria and Plants, eds. M.E. Rhodes-Roberts and F.A. Skinner, pp. 25–41. Society for Applied Bacteriology Symposium Series No. 10. London, New York: Academic Press.

    Google Scholar 

  6. Brown, M.E., and Beringer, J.E. 1983. Potential of antagonists for fungal control. Agr. Ecosyst. Envir. 10: 127–141.

    Article  Google Scholar 

  7. Burggraaf, A.J.P.; Quispel, A.; Tak, T.; and Valstar, J. 1981. Methods of isolation and cultivation of Frankia species from actinorhizas. Plant Soil 61: 157–168.

    Article  Google Scholar 

  8. Burr, T.J., and Caesar, A. 1984. Beneficial plant bacteria. CRC Crit. Rev. Plant Sci. 2: 1–20.

    Article  Google Scholar 

  9. Callaham, D.; Tredici, P. del; and Torrey, J.G. 1978. Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199: 899–902.

    Article  PubMed  CAS  Google Scholar 

  10. Castanho, B.; Butler, E.E.; and Shepherd, R.J. 1978. The association of double-stranded RNA with Rhizoctonia decline. Phytopathology 68: 1515–1519.

    Article  CAS  Google Scholar 

  11. Eisbrenner, G., and Evans, H.J. 1983. Aspects of hydrogenase metabolism in nitrogen fixing legumes and other plant microbe interactions. Ann. Rev. Plant Physiol. 34: 105–136.

    Article  CAS  Google Scholar 

  12. Hardarson, G., and Jones, D.G. 1979. The inheritance of preference for stains of Rhizobium trifolii by white clover (Trifolium repens). Ann. Appl. Biol. 92: 329–333.

    Article  Google Scholar 

  13. Harley, J.L., and Smith, S.E. 1983. Mycorrhizal Symbioses. London, New York: Academic Press.

    Google Scholar 

  14. Harper, S.H.T., and Lynch, J.M. 1981. The kinetics of straw decomposition in relation to its potential to produce the phytotoxin acetic acid. J. Soil Sci. 32: 627–637.

    Article  CAS  Google Scholar 

  15. Hayman, D.S. 1983. The physiology of VA mycorrhizal symbiosis. Can. J. Bot. 61: 944–963.

    Article  Google Scholar 

  16. Heritage, A.D., and Foster, R.C. 1984. Catalase and sulfur in the rice rhizosphere: an ultrastructural histochemical demonstration of a symbiotic relationship. Microb. Ecol. 10: 115–121.

    Article  CAS  Google Scholar 

  17. Hornby, D. 1983. Suppressive soils. Ann. Rev. Phytopathol. 21: 65–85.

    Article  Google Scholar 

  18. Joshi, M.M., and Hollis, J.P. 1977. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulphide in the rice rhizosphere. Science 197: 179–180.

    Article  Google Scholar 

  19. Kerr, A. 1982. Biological control of soil-borne microbial pathogens and nematodes. In Advances in Agricultural Microbiology, ed. N.S. Subba Rao, pp. 429–463. New Delhi: Oxford and IBP.

    Google Scholar 

  20. King, G.M.; Klug, M.J.; Wiegert, R.G.; and Chalmers, A.G. 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science 218: 61–64.

    Article  PubMed  CAS  Google Scholar 

  21. Kozloff, L.M.; Schofield, M.A.; and Lute, M. 1983. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153: 222–231.

    PubMed  CAS  Google Scholar 

  22. Lamont, B.B., and McComb, A.J. 1974. Soil microorganisms and the formation of proteoid roots. Austr. J. Bot. 22: 681–688.

    Article  Google Scholar 

  23. Malajczuk, N., and Bowen, G.D. 1974. Proteoid roots are microbially induced. Nature 251: 316–317.

    Article  CAS  Google Scholar 

  24. Menge, J.A. 1983. Utilization of vesieular-arbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61: 1015–1024.

    Article  Google Scholar 

  25. Mytton, L.R. 1975. Plant genotype x rhizobium strain interactions in white clover. Ann. Appl. Biol. 80: 103–107.

    Article  PubMed  CAS  Google Scholar 

  26. Nelsen, C.E., and Safir, G.R. 1982. Increased drought tolerance of mycorrhizal onion plant caused by improved phosphorus nutrition. Planta 154: 407–413.

    Article  CAS  Google Scholar 

  27. O’Gara, F., and Shanmugam, K.T. 1976. Regulation of nitrogen fixation by rhizobia. Export of fixed N2 as NH4+. Biochim. Biophys. Acta 437: 313–321.

    Article  PubMed  Google Scholar 

  28. O’Hara, G.W.; Davey, M.R.; and Lucas, J.A. Effect of inoculation of Zea mays with Azospirillum brasilense strains under temperate conditions. Can. J. Microbiol. 27: 871–877.

    Google Scholar 

  29. Peters, G.A.; Calvert, H.E.; Kaplan, D.; Ito, O.; and Toia, R.E. 1982. The Azolla-Anabaena symbiosis: morphology, physiology and use. Isr. J. Bot. 31: 305–323.

    Google Scholar 

  30. Postgate, J.R. 1985. Nitrogenase. Biologist 32: 43–48.

    CAS  Google Scholar 

  31. Robson, R.L., and Postgate, J.R. 1980. Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34: 183–207.

    Article  CAS  Google Scholar 

  32. Schonbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In Soil-borne Plant Pathogens, eds. B. Schippers and W. Gams, pp. 271–280. London: Academic Press.

    Google Scholar 

  33. Schubert, K.R., and Wolk, C.P., eds. 1982. The Energetics of Biological Nitrogen Fixation, pp. 30. Rockville: American Society of Plant Physiologists.

    Google Scholar 

  34. Strobel, G.A., and Nachmias, A. 1985. Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J. Microbiol. 131: 1245–1249.

    Article  Google Scholar 

  35. Suslow, T.V., and Schroth, M.N. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72: 199–206.

    Article  Google Scholar 

  36. Veeger, C., and Newton, W.E., eds. 1984. Advances in Nitrogen Fixation Research. Proceedings of the 5th International Symposium on Nitrogen Fixation, pp. 760, Noordwijkerhout, The Netherlands, August 28-September 3, 1983. The Hague: Martinus Nijhoff/Dr W. Junk.

    Google Scholar 

  37. Von Bulow, J.F.W., and Dobereiner, J. 1975. Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Nat. Acad. Sci. USA 72: 2389–2393.

    Article  Google Scholar 

  38. Witty, J.F.; Minchin, F.R.; and Sheehy, J.E. 1985. Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen. J. Exp. Bot. 34: 951–963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Beringer, J.E. (1986). Plant-Microbe Interactions. In: Silver, S. (eds) Biotechnology: Potentials and Limitations. Dahlem Workshop Reports, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70535-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70535-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70537-3

  • Online ISBN: 978-3-642-70535-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics